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Abstract

Human Robot Collaboration (HRC) applications can bring several benefits when applied
in industrial environments, since they allow to exploit the skills of both humans and robots
involved in the same team. Collaborative robots (cobots) are convenient especially for small-
sized enterprises, characterized by flexible and agile manufacturing requirements: compared
to the highly specialized platforms, cobots are fast re-configurable and adaptable to the new
product demand. A recent trend in collaborative robotics research consists in integrating
ergonomic principles in the design of the HRC strategy to mitigate both physical and cognitive
risks for the human operators, which would affect the entire process in terms of time and
costs. The aim of this thesis is to investigate a new method for an ergonomic and fruitful
HRC. In particular, the idea is to exploit task features and some quantitative measurements,
that are computed online, encoding the (physical or cognitive) human status, to optimize the
collaboration at the team-level. By acting on the roles distribution among the workers within
the human-robot team, we aim to allocate to the human workers only those tasks that do
not pose an ergonomic risk for them. The developed framework is composed by two main
modules. The first provides the model used to characterise the HRC task, considering actions
and workers features. We exploited AND/OR Graph (AOG)s, that we adapted to solve also
the role allocation problem. The other module provides the human ergonomic risk evaluation
during the actions performance, updating a risk indicator that contains the history of the
human "weariness" from the beginning of the collaboration. The ergonomics information
are embedded in the AOG arcs costs, that change during the task performance, guiding an
optimal graph search to assign to human workers only actions that are not hazardous. The
proposed framework is not paired with any specific metrics, but it remains a valid approach
by using different risk indicators, chosen according to the task features: it could convey
information about the physical human status or about the cognitive one. To validate our
framework we arranged a proof-of-concept assembly, made of light-weight pieces, and we
designed a kinematic risk indicator, kinematic wear, to evaluate potentialities and limitations
of the proposed method. After testing the two modules separately by means of two different
pilot experiments, we conducted a multi-subject preliminary experiment to evaluate the
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overall framework. By using the validated NASA questionnaire we were able to compare
the HRC task load with the effort required for executing the same task without the robot aid.
Then, with a custom questionnaire we tried to investigate the efficiency of the ergonomic role
allocation during the collaborative performance, trying to evaluate also the usability of such
a framework in industrial contexts. Even though the number of involved subjects is limited,
the results look promising: the more risky actions are recognized and they are not allocated
to the human. This leads subjects to complete the HRC task less fatigued and frustrated.
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Chapter 1

Introduction

The introduction of collaborative robots (cobots) in the industry dates back to the end of the
90s (Akella et al. (1999)) and envisions humans and robots not only to coexist in a fenceless
environment but also to share tasks, working simultaneously in the same workspace. This
new scenario overcomes the old industrial robot paradigm, describing a Smart Production,
one of the Industry 4.0 mainstays. The study of collaborative processes in which human
and robot agents work together to achieve shared goals in safety is known as Human Robot
Collaboration (HRC).

This first chapter has the purpose of introducing the thesis topic, starting with the
motivations behind this research (section 1.1). Some background is given by presenting the
state of the art (section 1.2), the main contributions of this work are stated in section 1.3,
while in section 1.4 an overview of the developed framework is given together with the
outline of the thesis.

1.1 Motivations

The research trend in collaborative robotics is motivated by different considerations. First,
while the human can adapt his/her action to the task requirements and can handle unexpected
events, robots are very precise, can tolerate heavy loads and their performance does not
decrease over time. Therefore, by mixing humans and robots in a heterogeneous team, it is
possible to exploit the skills of all the agents to maximize team performance. One of the first
attempts to distinguish between human and robot skills was proposed by Fitts (1951). He
made a list of what man can do better than a machine and vice versa: detection, perception,
judgement, induction, improvisation, and long term memory were considered human virtues;
speed, power, computation, replication, simultaneous operations, and short term memory
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Figure 1.1 Human and Robot skills according to Fitts (1951). Original illustrations.

denoted, instead, as machine features. Although this list is outdated and some assumptions
might not be true anymore, the basics concepts are still valid (see Figure 1.1).

Moreover, such robotic platforms capable to collaborate with humans are convenient
especially in scenarios of small and medium-sized enterprises (SMEs), characterized by flex-
ible and agile manufacturing requirements, since cobots, compared to the highly specialized
platforms, are fast re-configurable and adaptable to the new product demand.

Even though cobots have design characteristics that make them suitable to stay closer to
the human, such as the lightweight construction materials, the soft architecture, the speed
and torque limitations, these robots are not intrinsically safe. An essential requirement of a
robot programmed for direct interaction with human users or uncertain environments is that
it must in no case pose a threat to the human: the problem of safety in pHRI and the related
open issues have been extensively discussed in literature (Haddadin et al. (2009); Santis et al.
(2008)).

A recent trend in collaborative robotics research is devoted to the design of collaboration
strategies that take into account the ergonomics requirements typical of industrial applications
(Maurice et al. (2017)): such a designed strategy would have the potential to free human
operators from risky tasks, avoiding work-related musculoskeletal disorders (WMSDs), which
still represent the biggest problem in terms of absenteeism, and, hence, lost productivity
among workers in industries (Govaerts et al. (2021)).

Despite collaborative solutions have high potential in bringing several benefits in the
manufacturing and logistic processes, their exploitation in the workcell deployment is limited.
Some reviews about the already conducted studies and on the future challenges in the
HRC realm are written by Ajoudani et al. (2018); Cherubini et al. (2016); Maurtua et al.
(2017); Villani et al. (2018): researchers have tried to close the gap between the industrial
requirements and the HRC paradigm working on human–robot interfaces, robot control
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modalities, robot intelligence, and robot perception of the human physical status to make
ergonomic the collaboration.

This thesis purpose is to pursue in this direction, in particular by investigating the
development of a new method to ensure an ergonomic and fruitful HRC. The main idea is
to profit from quantitative measurements, encoding the human worker status, and from task
characteristics to optimize the collaboration at the team-level, i.e. intervening on the role
distribution within the mixed team.

Therefore, hereafter some background is given about multi-agent role allocation, one of
the main problems in the design of a collaboration strategy. The second part of the state of
the art, instead, shows the most famous ergonomics assessment methods in literature, and
how some of the previous studies integrate ergonomics principles in their HRC frameworks.

1.2 State of the Art

In the scenario of cooperative multi-agent systems a lot of work has been already done, in
particular in the case of multi-robot systems. When the researchers’ interest shifted from
single robot systems to multi-robot systems, the coordination of the whole team became a
priority. Many studies regarding this problem have been conducted in fields as exploration,
monitoring, transportation, robotic soccer (Farinelli et al. (2004)). An important aspect of the
team strategy consists in determining which agents should execute which tasks to accomplish
the desired final objective. This problem in literature is referred to as role allocation.

1.2.1 Multi-Agent Role Allocation

Treating the role allocation problem requires, first of all, a definition of the concept of role.
In literature, the distinction between role and task allocation problems (Campbell and Wu
(2011)) is a source of debate. Krieger and Billeter (2000) define the task as what specifies
“what has to be done” while role as “the task assigned to a specific individual within a set
of responsibilities given to a group of individuals”. Gerkey and Matarić (2003) recognize a
difference in the significance of the two words, but state that the two problems are equivalent.

Having defined roles in multi-agent systems has great importance for at least two reasons.
First of all, in this way, agents can become experts in the behaviors for which they are
responsible. For example, it could be possible to design many simple robots able to perform
a limited number of tasks for which they specialized, rather than constructing an expensive,
monolithic single-robot system. Moreover, if agents can learn through their experience,
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Figure 1.2 Visual representation of the three axes of Gerkey and Matarić’s taxonomy (Korsah
et al. (2013))

the repeated execution of behaviors specified by their role can improve their performance.
Another reason consists in the advantage of having a less number of agents that compete for
the execution of the same task, since having specialized agents reduce their capability of
performing every task. This effect is beneficial in multi-robot systems: less communication
and reduced physical interference.

Modelling the Role Allocation Problem Gerkey and Matarić (2004) carried out a formal
study of multi-robot task-allocation (MRTA) problem (since "the underlying problem [of

task and role allocation] remains the same") and proposed a domain-independent MRTA
taxonomy. In this study, the authors refer to tasks as sub-goals necessary to achieve the
completion of the overall goal. Each task is considered as independent from the others, a
strong assumption relaxed by later contributions (Korsah et al. (2013)). Figure 1.2 shows
the three axes generating the Gerkey and Matarić’s MRTA space. The first variable of a
MRTA problem is the robot type: the robot can perform at most a single task (ST) at a time
or multiple tasks (MT) simultaneously. The second variable is the task type: the task may
need a single robot (SR) or multiple robots (MR) to be achieved. The last variable is the
allocation type and separates problems dealing with instantaneous assignments (IA) of tasks
to robots and problems concerned with time-extended assignments (TA), i.e. each robot is
allocated several tasks, which must be executed according to a given schedule. Therefore,
task and agent properties and the desired allocation type place each role allocation problem
in the MRTA space.
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In literature, there exist three computational models for the role allocation problem
(Iterative Optimal Assignment Problem (OAP), Extended Generalized Assignment Problem
(E-GAP), Role-based Markov Team Decision Problem (RMTDP)); such models describe the
problem with different levels of generality. The simplest one is the OAP (Gale (1989)), that,
although restrictive, returns solutions in polynomial time for problems of the (ST-SR-IA)
class. To explain how the OAP works it is necessary to introduce the concept of utility. It is a
scalar value that describes an agent’s suitability to execute some particular role and it is a key
concept to many role allocation procedures. Utility can be the "agent offer" in auction-based
methods for role assignment (Dias et al. (2006)), it can be the variable of objective functions
to optimize (Abramson et al. (2005), Agüero et al. (2006)), or a way for agents to decide
between roles autonomously (Chaimowicz et al. (2002)). To compute an agent’s utility is not
trivial, since it depends on the agent’s capability for the role responsibilities, on the priority
of that role, and on the current and possible future needs of the team.

The OAP solves problems with n agents and n roles, and a non-negative utility value for
each agent-role pairing. The goal is to find the optimal matching between agents and roles,
maximizing the utility of the whole team and ensuring that each agent is assigned to exactly
one role. In a multi-agent system, this means that each agent computes its utility for all roles
and communicates the resulting values to the others; then an optimization algorithm is run
to determine which role is more appropriate for each agent. If the environment periodically
changes, also the utility values may change. In such a case, once the values have been
updated the optimization algorithm must be called again.

From Multi-Robot Teams to Mixed Teams The technical report by Bauer et al. (2016)
shows five different levels of human-robot engagement currently existing in the physical
Human Robot Interaction (pHRI) context (see Figure 1.3). The old paradigm of industrial
robotics is pictured as first, showing the human unable to enter the robot workspace defined
by physical fences, for safety reasons; in the coexistence scenario the robot is out of the
cage, but the workspace is not shared; in the third case the collaboration foresees sequential
actions, meaning that only one of the interaction partners is present in the shared workspace
at any one time; in the fourth setup both the agents work simultaneously within a common
work-zone; while the last scenario is intended to be an adaptive collaboration, i.e. the robot
can respond in real-time to the worker’s movements. The closer the human-robot interaction
is, the higher are the requirements in terms of safety. The problem of safety is paramount for
a successful collaboration and it is largely discussed in the literature (De Santis et al. (2008);
Haddadin et al. (2009)). Moreover, robot awareness of the human’s status and intentions
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gains importance through the interaction levels and becomes fundamental in the collaborative
approach: the strict division between the worker’s manual work and the robot’s automated
work is abolished, and cobots should be able to understand the operators’ needs to help them.

Figure 1.3 Engagement levels in human-robot interaction (Bauer et al. (2016))

Role Allocation Strategies in Human-Robot Teams The role of each agent of the team
can be embedded at the control-level or could be planned beforehand. In the latter case, the
collaboration plan is established by analyzing and describing the collaborative task as well as
the team agents’ skills. The typical approach consists in designing functions able to describe
the quality of agent-task pairing and through an optimization algorithm find the optimal
solution, as for the multi-robot systems. To generalize from a multi-robot scenario to a mixed
team of agents (both robots and humans), it is necessary to define an utility function also for
the humans: it has to be consistent, i.e. comparable with the ones representing the suitability
of robots for roles. The utility function for human agents can take into account postures the
human could assume performing each task, loads he/she could handle, task repetitiveness,
safety constraints according to the level of human engagement during the pHRI.

Pearce et al. (2018) used the Strain Index (introduced by Steven Moore and Garg (1995))
that considers the intensity of exertion, the duration of exertion, efforts per minute, hand/wrist
posture, speed of work, and duration per day. The optimizer provides a set of schedules that
enable to consider trade-offs between minimizing time and physical strain on the human
worker.

Bänziger et al. (2018) presented a fitness function, which, as the key indexes for an optimal
allocation solution, envisions: the task progress (the ratio of the number of completed actions
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to the total number of actions in a workplace), the waiting time (the difference between the
times the worker and the robot need to finish their tasks), and the traveled distance (the sum
of the traveled distance of the worker and the robot), which are calculated in the simulation.
In this approach the human–robot task allocation is optimized using genetic algorithms.

Other methods have been developed to dynamically schedule and allocate tasks to
workers by minimizing the overall execution time (Casalino et al. (2019); Fusaro et al.
(2021)). Nevertheless, these methods cannot account for the variety of different assembly
sequences that complex tasks might impose. To overcome this limitation a possible approach
is that of enlarging the usage of AND/OR Graph (AOG)s to embed the role allocation
problem (Johannsmeier and Haddadin (2016), Darvish et al. (2018)). The AOG data structure
was introduced by De Mello and Sanderson (1990) for describing a well-structured task and
its decomposition into a sequence of actions, and it is an efficient representation of a state
transition graph, with few nodes, that allows an easy search for the feasible assembly plans
(see section 2.1). The idea is that of assigning a cost to each transition, encoding the effort
of performing that action by each agent in the team, then, by means of a search algorithm
the optimal assembly plan and role distribution can be found (see section 2.2). In literature,
AOGs are widely used to treat task decomposition problems, while the agent characteristics
and the factors that should be considered in solving the task allocation problem in industrial
HRC are less investigated.

Lamon et al. (2019) proposed three measurable indexes to better describe the agents’ na-
ture, their kinematic and dynamic characteristics, leading to a capability-aware role allocation.
The task complexity index describes task properties, defining the agent suitableness to that
specific task. The other two indexes are agent dexterity, that measures the agent’s capability
of planning and moving in the environment, and agent effort, that evaluates ergonomics
and safety constraints; such indexes allow selecting the most suitable agent among the ones
that can execute the task. The three indexes are combined by means of a weighted sum,
obtaining a proper heuristic for the search algorithm. In Figure 1.4 the flow diagram for the
roles assignment is presented. First, the task properties are analyzed by decomposing it in
many sub-tasks (actions); then the cost of each agent in performing each single action is
evaluated through the three designed indexes; finally the roles can be defined according to a
cost minimization algorithm.

However, a limitation for such AOG approaches is that they provide the role allocation
beforehand, i.e. the agents are allocated tasks before starting the collaboration; then the
result of the allocation remains fixed for the whole teamwork. A great contribution to the
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Figure 1.4 Capability-aware Role Allocation Lamon et al. (2019)

researchers’ community would be making the AOG-based allocation dynamic, aware of
changes in agents’ state and in the environment during the collaboration.

On the other hand, it is possible to embed the teamed performance optimization at the
control-level. At such level the robot motion control strategies, guiding the real-time robot
behavior, are implemented. The recent advances of technology in the hardware design
of torque-controlled robots have enabled the development of control algorithms, such as
impedance and admittance control (Albu-Schäffer et al. (2007)), that allow cobots to perform
a vast number of tasks. However, to optimize the teamed performance, collaborative control
strategies tend to overfit the specific task, and sometimes it is not simple to re-use the same
algorithm for different tasks. For instance, Mörtl et al. (2012) coped with cooperative load
transport tasks, by implementing an algorithm that optimizes the performance in terms of
human effort: the same strategy would be not suitable to optimize a different task. The
collaborative solution implemented by Peternel et al. (2018) has the same limitation. The
physical behavior of the robot is adapted online to the human motor fatigue, measured through
EMG sensors, placed at the human shoulder joint. However, according to the executed task
(material sawing or surface polishing), the control policy for optimizing the performance
changes. Some manipulators involved in HRC processes are presented in Figure 1.5.
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Figure 1.5 (left) Lightweight robotic arm Kuka LWR 4+, (right) Lightweight robotic arm
Franka Emika Panda equipped with its standard gripper.

1.2.2 Ergonomics in Human-Robot Collaboration

Work-related musculoskeletal disorders (WRMD) are the single largest category of work-
related diseases in many industrial countries (Punnett and Wegman (2004)). Repetitive high
loads, mechanical compression, vibrations, improper working postures affect the workers
every day, negatively influencing their health and performances and, in extreme cases,
forcing them to be absent from work. Moreover, a certain portion of workers is represented
by advanced age people, which are even more sensitive to heavy working conditions and
predisposed to suffer from physical diseases. This scenario encourages the development of
solutions to decrease the operators’ cognitive and physical load, among which HRC recently
proved to be very promising. Indeed, proper control, planning, and perception algorithms
aim to make cobots able to understand the human agent’s status in terms of physical and
mental effort and to adapt their behavior to mitigate it.

In order to have a HRC application apt to temper the workers’ burden, the robot should
employ human ergonomics data: in literature, numerous approaches can be found for the
assessment of workers ergonomics that can be used for such a purpose. The majority of them
focuses on the physical load evaluation. One of the most widely used methods is Rapid Entire
Body Assessment (REBA) (Hignett and McAtamney (2000)), which considers kinematic
information and is based on the observation of the human body configurations. Each joint
angle is associated with a score corresponding to a risk of injury/harmful effects: the higher
the score, the higher the risk. As the same scores given to, e.g. the upper arm and the trunk,
are not equivalent, the method provides comparative tables to assign a final score that ranges
from 1 (no risk of WRMDs) to 12 (very high risk, it is recommended to change the posture).



1.2 State of the Art 10

Figure 1.6 Result of REBA calculation for the trunk, neck, upper arms and lower arms
(Busch et al. (2018))

In Figure 1.6, an extract of REBA tables is presented: in particular, the result of REBA
calculation for the trunk, neck, upper arms, and lower arms discriminates between safe and
dangerous ranges of joint angles according to the assigned score.

Originally this method was introduced for pen and paper assessment of industrial work-
flows, directly from the observation of workers’ activities, but the evaluation of the joints
position and the computation of the corresponding REBA score can be automatized (Busch
et al. (2017); Van de Perre et al. (2018)). Busch et al. (2017) obtained relevant data for the
planning phase of the ergonomic human-robot interaction by minimizing a cost function,
including also the worker safety level (computed with the extracted REBA scores). A similar
approach is used by van der Spaa et al. (2020) for finding the best plan for ergonomic
hand-poses in a co-manipulation task. Busch et al. (2018), in a later study, introduced a
differentiable version of REBA (dREBA), to directly optimize original REBA scores.

Ovako Working posture Analysing System (OWAS) (Karhu et al. (1981)) and Rapid
Upper Limb Assessment (RULA) (McAtamney and Corlett (1993)) are other standard
assessment methods which estimate an absolute level of risk depending on kinematic data,
similarly to REBA. Faber et al. (2017) used both measurements for establishing the ergonomic
cost of assembly steps in manufacturing operations, in order to meet the optimal assembly
sequence.

An alternative approach still exploiting kinematic data is proposed by Bestick et al.
(2015). They presented a collaborative handover framework able to consider the subject-
specific kinematics of the involved subject. The traditional methods are not used and motion
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capture data allow the estimation of a personalized kinematic model: such custom interaction
enhances the human collaborator ergonomics.

Nevertheless, the knowledge about kinematics might be insufficient to regulate fruitfully
HRC requiring the interaction with objects and with the environment, since data regarding
forces are needed as well. There already exist methods including static forces: National
Institute for Occupational Safety and Health (NIOSH) equation (Waters et al. (1994)) or
Washington Industrial Safety and Health Act (WISHA) indices. The latter provide the
assessments of risk level during a lifting task by considering human kinematics, but also
weight of the lifted object, number of lifts per minute and duration of the whole task. The
resulting ergonomics indicators are task-specific, so they do not accurately cover all kinds of
activities that may be addressed by cobots.

In principle, this limitation could be coped with by using a tool for the estimation of
human dynamics, which can be extended to any generic activity. With this aim, many software
packages for musculoskeletal modeling have been developed, that allow for complex motion
simulations and their biomechanical analysis. Commonly used packages are, for instance, the
AnyBody Modeling System (Damsgaard et al. (2006)) and the open-source software system
OpenSim (Delp et al. (2007)). Nevertheless, the provided dynamic musculoskeletal models
are so much detailed, that it might be ambitious to exploit them in designing ergonomic HRC
frameworks since it would require heavy computations for processing too accurate data, even
nonfunctional. A solution may be the design of simpler dynamical models. For instance,
Peternel et al. (2019) employed a human arm model for estimating the muscle force given the
arm configuration and the endpoint force, during the performance of drilling and polishing
tasks. In this study, the estimated muscle force is then mapped into a muscle fatigue level,
which drives the selection of a fatigue management protocol for the robot controllers.

In Peternel et al. (2018) framework, the measurements of EMG sensors, placed on the
muscles of the shoulder joint, allow the manipulator to predict human motor intentions,
enabling a dynamic adaptation of the robot effort during the task performance.

Alternatively, Kim et al. (2017a) used a force plate for measuring the displacements of
the Centre of Pressure and the Reaction Ground Force in the presence of external forces, to
estimate and monitor the human joint torque overloading (see section 3.2).

Even though the majority of studies for an ergonomic HRC target the reduction of human
physical load, the mental and psychological factors should not be disregarded. Indeed, due
to the increasing complexity of the production settings, the worker productivity and the
efficiency of the overall HRC can be negatively influenced by an extra cognitive load. For
example, the framework proposed by Rajavenkatanarayanan et al. (2020) used heart rate and
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skin conductivity measures to evaluate such cognitive burden, enabling robots to understand
more about their human teammates.

As it can be deduced, the worker’s ergonomics and comfort can be encoded by different
quantities according to the collaborative task. Moreover, the choice of planning and control
strategies determines the assessment method and the role of ergonomics indicators in HRC
architectures. The challenge in industrial scenarios lies in designing a framework able to
monitor many quantities to better characterize the collaboration (Maurice et al. (2017))
without burdening the operator with an excessive amount of sensors. The usage of too
many sensors is not advisable for industrial applications, since they might obstacle the
worker in his/her activities and, at the same time, the operator’s movements could make the
measurements noisy and unreliable. Especially EMG signals are very prone to noise, as such
non-invasive devices are applied on the worker’s skin.

1.3 Contribution

This thesis aims to dynamically integrate ergonomic constraints at the team-level of a HRC
framework by exploiting the AOG theory. In particular, AOGs model the task decomposition
and can be adapted to tackle the role allocation problem. The arc weights can be defined as
a function of measured quantities describing the human agent’s status and, by monitoring
such quantities, they can be updated during the collaboration. In this way, the optimal role
allocation might change dynamically. The variables that will be considered as arc weights
depend intrinsically on the specific collaborative task.

To overcome the limitation of the state-of-the-art methods, we propose an online role
allocation strategy, that can assign actions among the agents of the team according to the
physical human-worker status. The main contribution of the method is twofold:

• The introduction of online role allocation within the AOG structure, that, at each step
of the assembly task, provides the next action and the allocated worker, as a result of
an optimization algorithm AO*.

• The integration of a human joint-level status indicator, named kinematic wear, to guide
an optimal role allocation. It embodies the subject "ergonomic history", accounting for
the usage of each joint during the whole execution of an assembly task. However, due
to the adaptability of the designed framework, different ergonomic indicators can be
employed.
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The performances of the method are investigated with simulations that aim to evaluate its
time complexity and with a proof-of-concept assembly. The results show the potential of the
strategy in preventing risky actions during human-robot cooperative industrial tasks.

1.4 Framework

Figure 1.7 Framework scheme.

In this section the HRC framework we designed is presented, with the aim of introducing its
main blocks (shown in Figure 1.7) and giving an idea to the readers about the thesis outline.

• The assembly model block represents the model we chose to describe the HRC task,
taking into account actions and workers features. In section 2.1 and section 2.2 the
usage of AND/OR Graph for representing well-structured tasks and for solving the
targeted allocation problems is discussed;

• the second block represents the optimal search algorithm we have designed: the AO*
algorithm explores the graph finding the optimal assembly sequence and the most
suitable agent for the next action, as shown in section 2.3;

• once the human is asked to execute an action, during their performance a motion
capture system acquires kinematic data, in particular the upper-body joint angles
q(t). These recorded configurations are evaluated with an ergonomic risk score G(t),
according to RULA ergonomics assessment rules, one of the most common methods
existing in literature;



1.4 Framework 14

• the risk values recorded along the action execution are used for updating the kinematic

wear index of each upper-body joint, that embeds the history of each joint usage
without losing information about the most hazardous configuration it has assumed.
The design of such index is addressed in section 3.3;

• according to the kinematic wear values, the AOG hyper-arcs cost is updated for the
next allocation. Such updating procedure envisions the prediction of the entity of the
ergonomic risk the human would be exposed in performing each one of the possible
future actions. The risk prediction model is defined in section 3.1.

It is important to stress that the just presented framework envisions the kinematic wear as
risk indicator, since we used it to test the functioning of such dynamic human-robot role
allocation method. However, the framework can be paired with other metrics describing the
human risk.

Some principles of the discussed method are presented in Merlo et al. (2021).



Chapter 2

AND/OR Graphs for Role and Task
Planning

A commonly used approach for representing well-structured industrial tasks, such as as-
semblies, exploits AND/OR Graph (AOG)s. AOGs are data structures able to model all the
possible assembly sequences of an assembly task in a compact representation. Recently,
researchers extended the formulation of AOGs to embed also the role allocation problem in
human-robot assembly tasks. With such a method, not only the assembly sequence but also
the task-agent pairing can be optimized.

2.1 AOG for Industrial Task Planning

This structure is used by De Mello and Sanderson (1990) for describing compactly all the
possible assembly sequences for a certain product, which is composed of many pieces. The
advantage of using such graphs lies in having fewer nodes and a simpler search for the
optimal assembly plan guided by the weights associated with each arc in the graph.

Assembly plans are defined as ordered sequences of operations that change at each step
the configuration of parts, starting with all parts disconnected from each other and ending
with all parts properly joined to form the desired assembly. A configuration is defined by
the subsets of parts that have determined relative position among themselves. The starting
configuration is described by as many subsets as the number of single pieces involved in
the assembly. Each assembly operation consists in joining two or more pieces together,
according to the fixed relative positions among themselves, by increasing the elements in a
single subset (a sub-assembly) and decreasing the total number of subsets. A sequence of
assembly operations corresponds to an assembly plan.
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Introducing some notations, given an assembly P made of M pieces (P= {p1, p2, . . . , pM}),
a configuration Θ of P is a set of subsets of P such that:

• all the pieces in Θ subsets are assembled with physically feasible and stable connections
(the determined ones);

• each pi belongs to one subset of Θ;

• none pi belongs to two or more subsets of Θ.

The assembly plan can be seen as a sequence of many Θ, starting from Θi = {{p1},{p2}, . . . ,
{pM}} and ending with Θ f = {{p1, p2, . . . , pM}}. If all the possible configurations Θ of P

are interpreted as nodes and all the assembly operations that describe the transition between
two configurations as edges of a Directed Graph it is possible to find a path from Θi to Θ f

using path search algorithms. Since some assembly operations could be feasible but could
not lead to a solution, it is more advantageous to perform the research backward, i.e. from
Θ f to Θi. In this way, the search may be viewed as a decomposable production system in
which the problem of disassembling one assembly is decomposed into distinct sub-problems
each one consisting in disassembling one sub-assembly. This idea leads to the formalization
of AND/OR Graph (AOG)s and the search is redefined as a tree search over it.

The nodes of AOG correspond to subsets of P, i.e., each sub-assembly characterized by
fixed physically feasible connections among its pieces. The arcs, called hyper-arcs are pairs
in which:

• the first element is a node (father);

• the second element is a set of nodes (children) describing the sub-assemblies that can
be obtained with a disassembly action applied to the first element.

Introducing some notation, an AOG is described by a set of nodes N = {n1,n2, . . . ,n|N|}
where each ni corresponds to a subset of pi firmly connected and a set of hyper-arcs H =

{h1,h2, . . . ,h|H|}. Each node n ∈ N represents a state of the decomposed task, while hyper-
arcs define the transitions between states. Each h ∈ H describes a many-to-one transition,
meaning that it connects a set of child nodes with a father node. In the case of assembly tasks,
considering that most of the assembly operations join two sub-assemblies, hyper-arcs are
modeled as two-to-one connectors. The child nodes connected by the same h are in a logical
AND, while different hyper-arcs with the same parent node are in logical OR. To obtain the
same assembly configuration Θ̄, many pairs of sub-assemblies to join may exist: the two
sub-assemblies in each couple are in AND, since both are necessary to reach Θ̄; while among
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Figure 2.1 AND/OR Graph for a simple product De Mello and Sanderson (1990).

such couples there is an OR relation, because just one of the assembly operation that they
model can be executed to have Θ̄.

The only node without a father is named root. The nodes without children are identified as
leaf nodes and they are as many as the assembly pieces. To construct an AOG it is necessary
to know all the possible feasible assembly actions since they determine the number of nodes.

However, to show the power of AOG representation and to give an idea of how many
nodes would be handled according to the number of assembly pieces, De Mello and Sanderson
(1990) present two cases:

1. all the assembly parts are connected with the other ones: strongly connection case;

2. the pi piece is connected only with pi−1 and with pi+1: weakly connection case. This
means that having M pieces leads to M−1 connections.
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M Directed Graph Nodes AOG Nodes
10 512 55
12 2048 78
15 16384 120

Table 2.1 Number of nodes in the Directed Graph and in the AOG in case of weakly
connections among assembly parts.

The second case is more typical of real industrial assemblies in the case of a high number
of pieces. In Table 2.1 are listed the number of nodes in case of 10, 12, and 15 pieces for
the two assembly representations (Directed Graph and AOG, respectively). The more the
number of interconnections increases, the more the number of nodes rises, as well as the
convenience in choosing the AOG approach.

A graphical representation of an AOG example is given in Figure 2.1. The root node at the
top of the picture has no fathers and it is represented as a set with all four assembly parts. Four
hyper-arcs are leaving this node: each one links the father with two nodes representing the
two sub-assemblies that can be obtained by performing such a disassembly operation. These
four hyper-arcs are in logical OR since just one of these actions can be performed. Similarly,
each of the other nodes is connected through a hyper-arc with two child nodes describing
one possible result of its decomposition. It is important to highlight that there are no nodes
that appear more than once in the graph: the fact that the same sub-assembly can be obtained
by many disassembly operations is described by that node reached by many hyper-arcs. For
example, the sub-assembly represented by node 5 can result from two different operations
encoded by hyper-arcs 2 and 6. There are many paths from the root (node 1) to the leaf nodes
(9, 10, 11, and 12). Knowing which are the possible sub-assemblies allows us to evaluate
each operation effort and assign to each of the hyper-arcs a cost encoding such effort. The
hyper-arcs cost guides the search through the optimal solution, returning a tree (like the one
in Figure 2.2) which describes the best order of actions for completing the assembly (see
section 2.2 and section 2.3).

Some researchers treated the AOG structure considering nodes as sets of processes to
be solved before moving to another node, and transitions as sets of actions to be completed
before reaching the connected node (Darvish et al. (2018)). This novel schema might manage
to model various collaborative tasks and not only assembly.



2.2 AOG for Role Allocation 19

Figure 2.2 Disassembly plan using AOG De Mello and Sanderson (1990).

2.2 AOG for Role Allocation

Recently, this data structure has been employed for handling both the planning and the role
allocation problems. By combining them, a unique optimization process can return the best
assembly sequence and the optimal task distribution.

The framework proposed by Johannsmeier and Haddadin (2016) envisions the AOG
structure for representing human-robot collaborative assembly problems. The formalization
of the AOG is a bit different from the one proposed by De Mello and Sanderson (1990) that
is also the one used in this thesis, but it provides an idea of how to approach the allocation
problem. In particular, they design the assembly actions not with hyper-arcs but with other
nodes, named AND nodes (the red ones in Figure 2.3), while they call OR nodes the sub-
assemblies (the blue ones). They state that each assembly action can be performed by all the
workers involved in the cooperation and that according to some quantities it is possible to
establish how much an action costs to each worker: for the human, the cost is determined
by cognitive and physical workload, while for the robot the metrics are the execution time
and power consumption. In literature, the agent characteristics and the factors that should
be considered in solving the task allocation problem in industrial HRC are investigated by
Lamon et al. (2019). According to the Johannsmeier and Haddadin (2016) AOG definition,
each AND node has as many costs as the participating workers: through an A* search on the
AOG it is possible to find the optimal path and role allocation, by visiting the AND nodes
many times, each time considering a different cost.
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Figure 2.3 AOG according to Johannsmeier and Haddadin (2016).

In this thesis, inspired by the just mentioned method, to embed the role allocation problem
in our AOG formulation, two additional sets are defined: the set of workers involved in the
collaboration W = {w1,w2, . . . ,w|W |} and the set of assembly actions A = {a1,a2, . . . ,a|A|}
that workers have to perform. From now on, actions depict both proper assemblies (e.g.
screwing two pieces together) and ‘relaxed’ assemblies (e.g. move an object on top of a
table could be considered as an assembly between such an object and the table). As already
stated, the desired assembly sequence among all the possible ones that the AOG describes
can be computed through the assignment of a cost to each h ∈ H (ch1,ch2, . . . ,ch|H|). Since we
describe a cooperation scenario, the same action has a different cost for each worker. Unlike
the formalization by Johannsmeier and Haddadin (2016), instead of assigning many costs to
the same action, the same hyper-arc (that describe an assembly operation) is duplicated for
|W | times and a cost, that represents the suitability of wi to that action, is assigned to each of
them. Such values can encode the complexity of performing each assembly action, and, by
exploiting an optimal-based search algorithm, the path with the minimum total cost can be
found (see section 2.3). In Figure 2.4 is presented a general AOG of an assembly made by six
pieces A, B, C, D, and E. Each hyper-arc has a different color, since it represents a different
assembly action. The rectangle with the same color of the hyper-arc (e.g. the red one at
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Figure 2.4 General AOG showing the duplication of hyper-arcs for introducing in such
structure the role allocation problem. Each of these additional arcs has a different cost
according to the suitability of each agent in performing the corresponding action.

top - left) means that the action can be performed by N workers, therefore that hyper-arc is
duplicated for N times.

Moreover, Johannsmeier and Haddadin (2016) set AND nodes costs once fixing them
for the whole duration of the assembly task. Therefore, it is not designed for a dynamic
environment, which can influence the cost associated with workers and actions, and the
allocation established at the beginning of the cooperation would not change. Our framework,
instead, envisions monitoring the cooperation and updating the costs to ensure the role
assignment optimality at each instant.

2.3 AO* for the Optimal Search

To retrieve the desired assembly sequence and the optimal action allocation, a custom AO*
search is implemented, since, unlike the standard AO*, the goal of the algorithm is to inspect
all the leaf nodes, as they represent the atomic pieces which are all used in the assembly.
Such custom algorithm is inspired by the A* functioning.

A* is a best-first search algorithm: given the root node and a goal node it returns the
optimal path between them, i.e. the one with the smallest cost (Doran and Michie (1966)).
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Algorithm 1 AO* search
Require: root (node), goals (nodes)

1:
2: SearchState start, goal
3: start.setState(root)
4: goal.setState(goals)
5: Put start in OPEN list
6:
7: while !(OPEN.empty()) do
8: select the list member current with the lowest cost
9:

10: if current state is the goal one then
11: break
12:
13: for each node (j) inside the state of current do
14:
15: for each hyper-arc (i) whose the j node is father do
16: SearchState successor
17: successor = current
18: substitute the j node in the state with the two children of j
19: successor.setHyperArc(h(i))
20: successor.setCost(h(i).c)
21: successor.setFather(current)
22:
23: if successor is already in OPEN with a greater cost then
24: substitute that element with successor
25:
26: if successor is already in CLOSE with a greater cost then
27: remove that element from CLOSE and add successor to OPEN
28:
29: if successor is not in OPEN nor in CLOSE then
30: add successor to OPEN
31:
32: remove current from OPEN and add it to CLOSE
33:
34: opt_path.includeArc(current.h)
35: opt_path.includeNodes(children of current.h)
36: SearchState tmp = current.father
37:
38: while !(tmp == start) do
39: opt_path.includeArc(tmp.h)
40: opt_path.includeNodes(children of tmp.h)
41: tmp=tmp.father
42:
43: return opt_path
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At each iteration of its main loop, A* chooses the path that minimizes:

f (n) = g(n)+h(n)

where n is a successor of the current node on the path, g(n) is the path cost from the start
node to n, and h(n) is a heuristic function that estimates how much it costs to reach the
goal starting from n. The heuristic function is problem-specific. To be sure A* will return
the optimal solution, the heuristic function must be admissible, meaning that it does not
overestimate the actual cost to reach the goal.

To let the A* work with our AOG the algorithm 1 is designed. The idea is that of creating
a new tree where each node, defined as SearchState object, envisions:

• a set of nodes (named state), describing the assembly configuration;

• a hyper-arc (named h), that corresponds to the last action performed to obtain such
configuration;

• a cost (named c), encoding how much reaching that configuration costs;

• a link (named father) with its SearchState father.

The search acts in a top-down fashion, from the SearchState (in the pseudocode named as
start) which has the root node only in its set of nodes, which represents the state where all
the pieces are assembled, to the SearchState (in the pseudocode named as goal) which has
the leaf nodes in its set of nodes. When a node is visited, its expansion consists in creating
new SearchState objects, describing the assembly configuration that can be obtained starting
from the current one. To keep track of those nodes that have been visited but not expanded,
a list, named OPEN, is used; while another list is used for the nodes that have been visited
and expanded, named CLOSE (see Algorithm 1). Once the SearchState goal is reached, the
optimal path is obtained going backwards to the start one, "father by father", including arcs
and nodes in path variable. The desired path is the one that minimizes the sum of the costs of
the traveled hyper-arcs. The heuristic we used is h(n) = 0, but it is important to highlight that
the costs assigned to hyper-arcs embed some information about the further steps to complete
the assembly. For the description of the costs meaning and design see section 3.1. To verify
the correct functioning of this procedure, a brute force algorithm was implemented, able to
find all the possible paths given an AOG, computing the overall cost of each of these paths.
The path with the lowest cost computed with the brute force approach corresponds to the one
returned by our AO*.
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While the optimality of the solution, with fixed costs, is ensured, if costs change during
the task execution, the search algorithm should be called after the completion of each action.
In such a case, it explores a reduced graph, from the root node to the last reached state.
Therefore, each time the AO* search is called, the state of the SearchState goal will contain
the set of nodes representing the last reached assembly configuration.

The performances of AO* in terms of computational time have been tested and the results
are discussed in section 4.2.



Chapter 3

Integrating Ergonomics in
Human-Robot Role Allocation

Up to now the task decomposition and allocation model has been introduced, as well as the
used optimization strategy to retrieve the best allocation results, conforming to the hyper-arcs
cost. Presently, the focus becomes how the ergonomics constraints can be introduced in
such a framework. This is achieved by designing the hyper-arcs costs such that they embed
the ergonomics information. In this chapter the costs design and the updating procedure
are introduced in section 3.1. Then, section 3.2 reports two examples of risk indicators that
could be employed in our framework, proving its adaptability to many metrics. Finally, in
section 3.3 we present the risk index we formulated and used to test the overall framework
performances.

3.1 Risk Prediction for hyper-arcs cost updating

To include the ergonomics data in a HRC framework means to manage to adjust the system
behavior to be responsive to human exigencies. The strategy we adopted in our framework
consists in embedding ergonomics in the hyper-arcs costs, that encode the risk associated
to the execution of each action starting from the current conditions of the human status. In
order to implement such a strategy we need:

• a system monitoring some human variables (body postures, muscle activity, self-
touching...), according to a chosen risk indicator function, during the whole duration
of the task execution. In this work we refer to such indicator as V (t);
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Figure 3.1 An arbitrary LTI system in discrete time, with an exogenous input u, a disturbance
e, and an output y. The two input signals are filtered with transfer functions G(z) and H(z),
respectively.

• a model that processes the monitored variables through the appropriate ergonomic
rules, returning a risk value V (t̄) at instant t̄;

• a prediction model able to retrieve the risk level related to each action if it would be
executed next V̂ (tk+1), given the current human worker conditions V (tk). Here tk is
the current instant (at the end of action ak) and tk+1 the instant in which action ak+1 is
completed;

• a procedure that translates the predicted risk into hyper-arcs costs.

While the first two items are specific of the formulation of the ergonomic risk function,
mapping the human monitored quantities into the corresponding risk level V (t), the last two
can be fixed and exploited with different V (t).

Prediction model Given an arbitrary linear and time-invariant Single-Input Single-Output
(SISO) system in discrete time with an input u(k) and an output y(k), where k is the sampling
instant index, the difference equation which describes the input/output relation is:

y(k) = α1y(k−1)+α2y(k−2)+ · · ·+αny(k−n)+b0u(k)+b1u(k−1)+ · · ·+bmu(k−m)

(3.1)
where it is clear that the value of y at the current instant depends on the previous values of y

and on the current and previous values of u.
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By assuming ai = −αi and interpreting z−1 as the one step delay operator (z−iy(k) =

y(k− i)) (Lennart (1999)), we can rewrite Equation 3.1 as:

[1+a1z−1 + · · ·+anz−n]y(k) = [b0 +b1z−1 + · · ·+bmz−m]u(k). (3.2)

Then, recognizing [1+a1z−1 + · · ·+anz−n] and [b0 +b1z−1 + · · ·+bmz−m] as two polyno-
mials in z−1, A(z) and B(z) respectively, we obtain:

y(k) =
B(z)
A(z)

u(k) = G(z)u(k). (3.3)

This is named hybrid notation, since both time and frequency are present in the same equation.
This notation is valid only if we consider the forced output, while the free response is assumed
to be vanished or, at least, negligible. By assuming to have a disturbance e(t) as an additional
input to the system, filtered by a transfer function H(z) = C(z)

D(z) , Equation 3.3 becomes:

y(k) = G(z)u(k)+H(z)e(k) (3.4)

and a graphic representation is given in Figure 3.1. e(k) is assumed to be a white sequence:
it means that e(k) is uncorrelated with e(k− r), ∀r > 0. If the system dynamics is known,
that is the coefficients of polynomials A(z),B(z),C(z), and D(z) are known, given I(k−1) =
{y(0), . . . ,y(k− 1),u(0), . . . ,u(k− 1),u(k)} it is possible to predict the output at the next
instant k, by using Equation 3.4 manipulated like:

y(k) = z
[

1− C(z)
D(z)

]
y(k−1)+

C(z)
D(z)

B(z)
A(z)

u(k)+ e(k). (3.5)

Since e(k) is a white sequence, the expected value of y(k) is:

ŷ(k|I(k−1)) = z
[

1− C(z)
D(z)

]
y(k−1)+

C(z)
D(z)

B(z)
A(z)

u(k). (3.6)

If D(z) = 1 and C(z) = A(z), equation 3.5 becomes

y(k) = z [1−A(z)]y(k−1)+B(z)u(k)+ e(k). (3.7)

In literature this is known as the ARX model (Lennart (1999)), where AR and X stand
for Auto Regression and Exogenous input, respectively. In this case, the output prediction
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formula 3.6 simplifies to

ŷ(k|I(k−1)) = z [1−A(z)]y(k−1)+B(z)u(k). (3.8)

In the case we don’t know how the system evolves (black box case), we can use the prediction
formula also to estimate the model parameters, by exploiting the system history, trying to
minimize the error between the actual system output and the predicted one. The ARX model
allows to find the parameters with a one-shot solution (non iteratively).

In our case, by exploiting the information carried by the risk indicator V (t) about the
human status at the current instant tk and the a-priori knowledge about the risk associated to
each action in the task, it is possible to predict the human conditions V̂ (tk+1) at the end of
each possible future action ak+1. Therefore, rewriting the Equation 3.8 as:

ŷ(k+1|I(k)) = z [1−A(z)]y(k)+B(z)u(k+1) (3.9)

the prediction equation we used is Equation 3.9, with ŷ(k+1) = V̂ (tk+1), y(k) =V (tk), and
u(k+1) representing the monitored quantities describing the human status at instant tk+1.
Even though the input and output variables may change, such a model can be used to predict
the risk future values, both when the system dynamics is known (A(z) and B(z) known) and
when it has to be identified (A(z) and B(z) to be estimated).

Hyper-arcs cost update To make the role allocation algorithm able to choose which action
is suitable for the human worker given their current status, the ergonomic risk predicted values
are used to update the cost of each AOG hyper-arc. Having such costs, that change according
to the previous performance and that estimate which would be the human conditions in
the future step, the AO* solution can prevent the human subject from executing dangerous
actions.

To compute the cost for the hyper-arc h j, modeling the corresponding future human
action ak+1, the formula is:

cak+1,wh
= ch j,wh =

m

∑
i=1

γi, (3.10)

where m is the number of monitored joints and

γi =

V̂i(tk+1) if V̂i(tk+1)<Vth

V̂i(tk+1)+ γhigh if V̂i(tk+1)≥Vth

∀ V̂i(tk+1) (3.11)
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where Vth represents a threshold value, chosen as a certain percentage of Vmax, the maximum
value that V (t) can assume. This means that the j-th hyper-arc cost equals the sum of the
predicted risk values at each joint if the action modeled by such j-th hyper-arc would be
performed as ak+1. In the case one (or more) V̂i(tk+1) is greater than Vth, another addend
γhigh is involved in the sum, that increases the hyper-arc cost so much that AO* will exclude
each path containing the j-th hyper-arc.

Instead of this simple sum, it is possible to introduce a weighted sum with a different
weight for each joint, to ensure that some joints prevail in the cost computation.

As discussed in subsection 1.2.1, when two or more agents aim to cooperate in a team, the
functions describing their suitability to each task must be comparable to allow the allocation
algorithms to deal with consistent data. In our case, the worker’s aptitude for performing a
specific action is encoded by the hyper-arcs costs. Therefore, we have to assign comparable
costs to hyper-arcs modeling human and cobot actions. To accomplish that, as cobot actions
cost, a constant cak+1,wr

= ch j,wr = cconst of the same order of magnitude of cak+1,wh
is selected.

The choice of its value determines the percentage of robot activity during the collaboration:
the lower cconst the higher such a percentage and vice versa.

3.2 Ergonomic Risk Indexes

The measured and monitored quantities to keep track of the human risk V (t) are decided by
task features and by the required human engagement level. The presented framework is not
coupled with any specific metrics, but it remains a valid approach if we manage to:

1. find functions able to describe the risk the human incurs when executing each action in
the task,

2. define an index able to describe the current human status for each instant of the task
execution,

3. choose proper parameters for the risk prediction model.

As discussed in the state-of-the-art (subsection 1.2.2), the description of the human physical
status can be kinematic (by considering only body configurations and postures) or dynamic
(evaluating also the effect of the interaction forces); while other kinds of tasks require the
measurement of the cognitive load to guarantee a stress level mitigation.
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A dynamic risk indicator An example of dynamic risk indicator is based on joint torques
variations assessment, that could be used to estimate the human physical status during the
execution of heavy manipulation tasks. Kim et al. (2017b) present a new method for the real-
time estimation of joint torque variations based on the deviations of the Centre of Pressure
(CoP) and Ground Reaction Force (GRF) in the presence of interaction forces.

By computing the difference ∆τ between the human joint torque in loaded τwt and natural
τwo (without interaction forces except for the GRF) conditions, under the assumption of
quasi-static movement (due to the natural motion when handling heavy loads) the overloading
joint torque is obtained:

S⊤
∆τ = S⊤(τwt − τwo) =−

[
n f

∑
i=1

(
JCPi

(q)⊤fwt,i −JĈPi
(q)⊤fwo,i

)
+

nh

∑
j=1

Jah j
(q)⊤fh, j

]
(3.12)

where:

• q = [x⊤0 θ⊤
0 q⊤

h ] ∈ R6+n represent the generalized coordinate of the system with
x0 and θ0 are the position and the orientation of the base frame {0}, at the pelvis
level, with respect to the inertial frame {w} (the human model is floating base), while
qh = [q1 . . .qn]

⊤ ∈ Rn is the vector with the angular position of n revolute joints
modelling the human body joints;

• S = [0n×6 In×n] ∈ Rn×(6+n) is the actuation matrix;

• fwt,i, fwo,i are the vertical GRF with and without the effect of fh,i, respectively (see
Figure 3.2). n f = {0, . . . , f ≤ 2} are the number of ground contact points, while nh are
the contact points of the external forces;

• JCPi
, JĈPi

, and Jah j
are the Jacobian matrices that transform the Cartesian forces (fwt,i,

fwo,i, and fh,i respectively) into generalized forces at the joints level.

To evaluate the cumulative effect of the overloading torque induced on the joints over
time by payloads, Lorenzini et al. (2019) introduce a fatigue model based on the joint torque
capacity and the overloading effect on the given joints, also considering an individual’s
subjective perception of fatigue. The fatigue behavior is modelled as an RC circuit with zero
initial charge state. The overloading joint fatigue of the i-th joint Vi at time instant t is defined
as:

Vi(t) =Vi,max

(
1− e

−
∫

Ki
∆τi(t)
Vi,max

dt
)

(3.13)
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Figure 3.2 COP and vertical GRF variations without and with interaction forces. At the joint
level ∆τ describes the overloading torque ( Kim et al. (2017b))

where Vi,max is the maximum joint overloading set according to biomechanical data and Ki is
the fatigue ratio and takes into account the subject’s physical capacity and feelings. Besides
the fatigue model is presented another model to describe the recovery of force generation
capacity during the rest periods:

Vi(t) =Vi,max − (Vi,max −Vi(0))e−Ri(t) (3.14)

with Vi(0) is the initial overloading fatigue and Ri the recovery ratio for the i-th joint. Then,
by assuming Vi,th as an overloading threshold, the relation between the two models follows:

Vi(t) =

Fatigue model if ∆τi >Vi,th

Recovery model if ∆τi ≤Vi,th

(3.15)

The aim of the overloading joint fatigue/recovery model is that of giving an estimation of the
risk associated to task in real-time, and suggesting how to reduce such a risk. In Lorenzini
et al. (2019) work the overloading joint fatigue model is used to monitor the joints state and
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to trigger the robot assistance once the overloading overcomes the predefined Vi,th: the robot
reacts leading the human to assume a body configuration that mitigates the risk.

Lamon et al. (2019), instead, exploit a simplified version of this fatigue model to obtain
"a metric that is able to estimate some features of the dynamic behaviour of the agent in

executing each action". By estimating the fatigue level at each joint, it is possible to define
the agent effort associated with each action in the task. Such a metric is valid for both human
and robot agents: the joint torque results from muscle activity and motors, respectively.

Since a way for computing the overloading joint torque online is given (Kim et al.
(2017b)), as well as the definition of a dynamic index able to track the overloading joint
history by considering the cumulative effects of handling payloads over time (Lorenzini et al.
(2019)), and since such information can be embedded in a numeric value describing the agent
effort level associated to the execution of each action (Lamon et al. (2019)), the overloading
joint fatigue seems suitable to be used as ergonomic risk indicator also in the framework this
thesis introduced.

A cognitive risk indicator On the other hand, if the collaborative task requires a demand-
ing mental performance, other factors are necessary to well describe the extra cognitive load
risk. The framework presented by Lagomarsino et al. (2021) for the evaluation of excessive
cognitive load in assembly workers analyses:

• the gaze direction and head orientation to estimate the level of attention;

• the body language activities, as self-touching, to evaluate the stress-level;

• the cognitive effort envisioned to understand the instructions and to handle the right
tools and components for the task completion.

In Table 3.1 the mental effort factors and stress level factors that influence the cognitive
load of a human worker are listed and the corresponding formulas for computing each
contribution are reported. Combining such indexes together by means of a weighted sum, a
final score is obtained that can reflect the human cognitive processing.

1Lagomarsino et al. (2021) define the movements s j
k of j-th joint ( j=[1,2, . . . ,N] where N is the number

of joints) in a time window τ as the sum of the 3D position displacements d j
k−i,k−i−1 within two subsequent

frames (where k refers to a system pipeline loop ). In an initial calibration phase, the mean motion µ1, . . . ,µN
of upper body joints and their standard deviation σ1, . . . ,σN is computed. During task execution, the deviation
∆

j
k of each joint from the baseline µ j is periodically computed and a parameter a j

k is associated by comparison
with the stored σ j. A unique descriptor of activity level ak is determined as the mean of all the upper body
joints’ activity.
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Table 3.1 Definition of mental effort and stress level factors by Lagomarsino et al. (2021).

Mental effort factors Expression

Concentration Loss: time that the subject does not explic-
itly dedicate to the task accomplishment.

1−∑
M
w=1

[attention time]w
time elapsed

Learning Delay: ability to rapidly learning a novel rule
from instructions and automaticity in completing assemblies.

dwell time on assembly
time elapsed = [attention time]1

time elapsed

Concentration Demand: estimation of the incidence of
attention failures.

∑
D
d=1

[instant of attention loss]d
time elapsed

Instruction Cost: estimation of the general quality of
instructions.

∑
C
c=1

[instant of not required switch]c
time elapsed

Task Difficulty: estimation of the required cognitive effort
to perform tasks.

∑
B
b=1

[instant of instruction check back]b
time elapsed

Collaboration Cost: attention that the subject gives to the
assistant during the collaborative assembly task.

assistant fixation time
time elapsed = [attention time]3

time elapsed

Mistrust for assistant: level of trust of the subject toward
the assistant.

∑
A
a=1

[instant of assistant check]b
time elapsed

Stress level factors Expression

Self-touching: behavioural indicator of stress and anxiety. ∑
S
s=1

[instant of self-touching]s+60−t
60

Hyperactivity1: high activity periods with respect to base-
line movements in terms of joint’s displacement over time.

s j
k = ∑

τ−1
l=0 d j

k−l,k−l−1

if ∆
j
k=s j

k − µ j >

σ j then a j
k=∆

j
k

σ j
− 1

ak=min
( 1

N ∑
N
j=0 a j

k, 1.0
)

Note: M is the number of workstations, while D, C, B, A, and S are the total occurrences of
the corresponding event while working on the task.

By using such scores it is possible both to characterize each assembly action in terms of
required mental activity and to assess the cognitive human status during the task execution.
Therefore, also this risk indicator can be compatible with our framework.

3.3 Kinematic Wear

In this work, since assembly tasks of a large number of lightweight pieces are addressed, a
kinematic index can capture more precisely potentially damaging situations: the manipulated
objects are not so much heavy to consider the interaction forces as a main contribute in the
ergonomic risk computation. Therefore, we designed a kinematic risk indicator to show
potentialities and limitations of such a framework.
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The idea behind the kinematic wear design consists in having an index able not only to
describe the current risk by measuring the current body configuration but also to convey in-
formation about the past postures hazard, unlike the traditional kinematic indexes. Therefore,
to model the kinematic wear index at the joint level we chose an RC circuit behavior:

Vi(t) = 1− (1−Vi(t0)) e−
∫ t

0
Gi(q(τ))

C dτ (3.16)

where Vi(t) ∈ [0,1), Vi(t0), Ci, and Gi(q(t)) are, respectively, the kinematic wear level at the
current instant, the kinematic wear level in the initial conditions, the endurance capacity, and
the current risk score of the i-th upper body joint evaluated according to its configuration
q = [qx qy qz].

According to the cooperation protocol, we impose that while the robot executes an action,
the following action cannot be allocated to the human: during this rest period the kinematic

wear level of each joint decreases according to the recovery function (RC circuit discharge):

Vi(t) =Vi(t0) e−
r
C t (3.17)

where r is the recovery rate. Such model has been used already in literature to describe
human muscle usage (Lorenzini et al. (2019); Ma et al. (2010)) and also thermal motor
usage (Urata et al. (2008)). In a similar way, with Equation 3.16 we would like to provide a
joint-level kinematic usage descriptor. Further details about the design of model parameters
follow.

Ergonomics Assessment Function G(q) The ergonomics assessment method we chose
for evaluating the ergonomics of body configurations is the Rapid Upper Limb Assessment
(RULA) (McAtamney and Corlett (1993)). As already mentioned in subsection 1.2.2, this
method assigns to each joint (shoulder, elbow, wrist, trunk and neck) a score that represents
the associated postural risk: a high score means a high risk. In particular, for each joint, the
Range of Motion (RoM) in the sagittal plane (movements mostly occur on this plane) is
divided in regions and to each region corresponds a risk level. Then, to each qs (with this
notation we refer to the angle generated by the joint rotation around the axis normal to the
sagittal plane) is associated the risk of the region it belongs. With this score assignment
criterion, a jump discontinuity happens each time a joint changes region of RoM.
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Figure 3.3 RULA scores for shoulder postures in sagittal plane

The shoulder RoM split into five areas, each of them with its risk score (see Figure 3.3),
is an instance of such "jumps":

Gshoulder(qs) =



1 if −20° ≤ qs < 20°

2 if qs > 20°

2 if −45° ≤ qs <−20°

3 if −90° ≤ qs <−45°

4 if qs ≤−90°

(3.18)

where a positive angle describes the arm extension, while the negative angle the arm flexion.
To smooth the risk score assignment, Gi(qs(t)) is modeled as a weighted sum of sigmoid
functions, to approximate the RULA scores, ensuring continuity. In this way, at the "border"
between two regions, the risk does not change instantly but gradually. Then we compute
Gi(qs) as:

Gi(qs) = 1+
nt,i

∑
j=1

Ki, j

1+ em(qs+q̄si, j)
(3.19)

where the unitary constant term is to ensure that Gi,min = 1 is the minimum value of such
function, nt,i is the number of transitions between adjacent areas with different risk score, Ki

is the sigmoid gain, q̄si, j is the angle corresponding to the j-th transition, while m is the slope
coefficient: the more |m| increases, the more the resulting function will match the staircase
RULA function. In the shoulder case the risk score function, hence, results to be:

Gshoulder(qs) = 1+
1

1+ e−m(qs−20°)
+

1
1+ em(qs+20°)

+
1

1+ em(qs+45°)
+

1
1+ em(qs+90°)

(3.20)
As previously specified, the imposed RULA constraints evaluate the antero-posterior

movements (shown in Figure 3.3 and Figure 3.4), but the method does not provide any
specific risk distribution to distinguish ergonomic joint angles from unsafe ones. Since the
human ergonomics assessment cannot be efficient if it refers to a subset of movements, to
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Figure 3.4 RULA scores for postures in sagittal plane of elbow (top), wrist (second), trunk
(third), neck (bottom)

have a risk evaluation of postures in 3D, we had to set these additional constraints, which
can grade the risk attached to: arm adduction-abduction, external-internal rotation of the arm,
wrist side bending and wrist twist, trunk side bending and trunk twist, neck side tilt and neck
twist. The criteria we used for setting these constraints consist in adding to the retrieved
Gi(qs) an additional point when the i-th joint overcomes the 75% of its RoM, two additional
points when it approaches the RoM limit. Thus, for sake of clarity:

Gi(q) =

Gi(qs)+1 if |qa|> 3
4 |qa,max|

Gi(qs)+2 if |qa| ≈ |qa,max|
(3.21)

where qa refers to the joint angles describing the "additional" movements and qa,max is the
joint limit.
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Endurance Capacity and Recovery Rate Given that a subject, in a static configuration,
can exert a low force (e.g., holding a lightweight object) for Tmax = 240 s without physical
discomfort (McAtamney and Corlett (1993)), we set the capacity C to allow the human joint
to reach the asymptotic value of V = 1 after Tmax, starting from 0 initial condition.

To retrieve the value of C, Equation 3.16 is inverted with a value of Vi(t) = 0.993 =Vmax

(corresponding to five time constants), with an average level of RULA (risk value Gavg = 3).
The score Gavg = 3 represents a medium joint risk since the values of Gi(q(t)) are bounded
by 1 to 7. In this way, the capacity value is the same for all the joints.

C =−Gavg
Tmax

ln(1−Vmax)
=−3

240
ln(0.007)

. (3.22)

In practice, according to Equation 3.22, the i-th joint motion during the task execution
generates a change of the RULA score Gi(q(t)), which, in turn, increases the corresponding
kinematic wear Vi(t), with a slope proportional to the risk level of the new posture: the riskier
the posture the steeper the kinematic wear increase (see Figure 3.5).

For what concerning the recovery rate r, it is obtained by inverting Equation 3.17 con-
sidering to match the recovery time (discharge) with the wear time (charge), i.e. the joint can
fully recover in a period of 240 s. Therefore, we have:

r =− C
Tmax

ln
(

1−Vmax

Vmax

)
, (3.23)

It is important to highlight that both C and r values have been decided according to some as-
sumptions based on data found in literature. However, they could be object of an optimization
process.

Prediction Model Parameters The model described in section 3.1 can also apply to the
kinematic wear prediction. A one-step predictor is used to predict the future risk level at
the end of each action, in order to decide the next allocation. The prediction V̂i(tk+1) of the
risk associated to the execution of the next action ak+1, where tk is the instant when ak was
completed, can be computed as:

V̂i(tk+1) = αk+1,iVi(tk)+βk+1,i (3.24)

where αk+1,i and βk+1,i are the linear parameters that regulate the raise of kinematic wear

over time, for the i-th joint. From Equation 3.24 is clear that:
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Figure 3.5 Charge and discharge trend of wrist kinematic wear Vwrist(t) if joint angles remain
in the same risk area (G = 1, G = 3, G = 5, and G = 7). The higher the risk (greater G), the
faster the charge and discharge time.

(i) the predicted risk value is linear with respect to the initial conditions. i.e. the wear
accumulated by the previous actions,

(ii) the increase due to the execution of action ak+1, i.e. the model parameters, does not
depend on the past actions.

Therefore, the predicted value V̂i(tk+1) is the result of combining information only related to
the current human status, embedded by V (tk), and data about the "future" conveyed by the
prediction parameters.

Moreover, αk,i and βk,i are representative of the level of the i-th joint involvement in the
action ak and hence should be estimated offline. In Chapter 5, we will show how we estimate
these parameters by performing a calibration phase before starting with the effective HRC.

By comparing model (3.16) with (3.24), it is straightforward to understand that the RC
circuit-like model provides also a good prediction of the kinematic wear, since αk+1,i =

e−
∫ tk+1

0
Gi(τ)

C dτ , and βk+1,i = 1− e−
∫ tk+1

0
Gi(τ)

C dτ = 1−αk+1,i. As a result, only one value per
joint i per action k+1 (i.e. αk+1,i) should be estimated and stored to compute V̂i(tk+1) online.



Chapter 4

Software Architecture and Performances

Now that all the framework blocks have been described, the aim of this chapter is that of
explaining how the system has been implemented as a software architecture. In particular,
section 4.1 shows the main processes and how they communicate among each other, while in
section 4.2 the computational complexity in terms of time is discussed in particular for the
"bottleneck" component.

4.1 Software Architecture

The architecture has been developed in C++ and Python, on Ubuntu 18.04 and ROS Melodic;
the three main processes are defined as ROS nodes, that communicate according to the
publisher-subscriber protocol by means of ROS topics. The ROS graph generated by
rqt_graph representing the overall structure is shown in Figure 4.1.

Figure 4.1 Software Architecture of the designed framework. The circles represent ROS
nodes, while the squares are ROS topics. The arrows describe the data flow.
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From joint angles to Kinematic Wear (from_q_to_kw)
input:

• qi = [qi,x qi,y qi,z] for each i-th human joint

• wk, worker allocated for the current action

output:

• Vi(t) for each i-th joint

This node is responsible of converting each upper body joint configuration qi into the
corresponding risk level Gi(q) and then it updates Vi(t) that keeps track of the entire joint
wear history. The second input signal for this node wk encodes which agent has been allocated
for the current action, as the AO* search result. If wk = human, it means an increase of
kinematic wear, while if wk = robot it means that the robot performs the action allowing the
human worker to have a rest:

Vi(t) =

Fatigue model if wk = human

Recovery model if wk = robot
(4.1)

This node runs at 20 Hz: this choice is due to the fact that, as shown by Antonsson and
Mann (1985), human activity frequencies are between 0 and 20 Hz and the 98% of the FFT
amplitude is contained below 10 Hz. Then, according to the Nyquist-Shannon theorem,
we can choose 20 Hz as sampling frequency without losing the main joint configuration
variations.

From Kinematic Wear to Action costs (from_kw_to_cost)
input:

• Vi(t) for each i-th joint

output:

• ca,wh for each human action a in the task

This node is subscribed to the joint_kinematic_wear topic, reading the kinematic wear values
with a frequency of 70 Hz, not to lose any message from the publisher. In this way, the
process, starting from Vi(tk) (value of Vi at the end of action ak), can predict Vi(tk+1) (value
of Vi at the end of action ak+1) for each possible future action ak+1, by applying the a-priori
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knowledge about the joint wear each of them provides. Such a knowledge is collected during
a calibration phase, as shown in section 5.2, in which the human worker is asked to perform
in a stand-alone modality each action. This phase anticipates the effective HRC.

Then, costs for each human action cak+1,wh
are computed according to the procedure

discussed in section 3.1 and sent to the AOG node through a topic, in order to update the
corresponding hyper-arcs cost.

AND/OR Graph (AOG)
input:

• ca,wh for each human action a in the task

• signal encoding the end of action executed by the human

output:

• next action to execute

• worker allocated to that action

• message for the human interface

If action ak is allocated to the human, when that action performance is finished (at instant tk),
an exogenous signal triggers the hyper-arcs cost updating procedure and the AO* search on a
reduced AOG aware that ak has been just performed (as explained in section 2.3). If instead,
ak is allocated to the robot, the signal that activates the role allocation algorithm corresponds
to the robot confirmation of having terminated the action.

The allocation results are published on two different topics and recorded in a log file.
While, on the human_interface topic a message that informs the human about the AO*
solution is sent.

4.2 Computational Complexity Evaluation

According to the asymptotic complexity analysis, if we consider to limit the monitored joints
to the upper-body ones, process from_q_to_kw increases its computational time linearly with
the number of human workers involved in the collaboration Nw. The computational cost,
hence, is O(Nw). Similarly, process from_kw_to_costs complexity is linearly dependent to
both Nw and the number of actions in the task Na. That is, its cost corresponds to O(Nw×Na).
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Therefore, since increasing the AOG size causes an exponential growth of the number of
possible paths from root to goal state (see section 2.1), to test the time complexity of the
whole framework it is sufficient to evaluate the AO* performances. Moreover, since the
search is iteratively performed after the execution of each action, this evaluation is important
to ensure that a solution can be found within the duration of the current action. We carried
out the simulations on a laptop with an Intel Core i7-8565U 1.8 GHz × 8-cores CPU and 8
GB RAM.

Figure 4.2 AO* computational time (in log scale) obtained by increasing the number of
pieces to be assembled (top) and workers (bottom).

The computational complexity of the AO* algorithm was evaluated by running the search
on AOGs with an incremental size of:

1. leaf nodes, from 2 to 15, representing the atomic assembly pieces (with a fixed number
of agents equal to 2).

2. agents involved in the cooperation, from 2 to 30 (with a fixed number of assembly
pieces equal to 10).

These AOGs were generated (via yaml file) by considering the hypothesis of stable and
feasible interconnections between adjacent pieces. This means that, given M pieces, there
are N-1 interconnections between the M pieces, i.e. the i-th interconnection connects piece
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pi and part pi+1 (De Mello and Sanderson (1990)). In Figure 4.2 both graphs present an
exponential trend, even more promising than the one presented in Darvish et al. (2020) for
what concerning the standard representation of AOGs. In particular, the plot in the bottom
graph (increasing number of agents) presents a flattened curve. This is because an increment
of the number of agents implies a raise of the number of hyper-arcs, while an increment
of the number of pieces entails a raise of both nodes and hyper-arcs. An assembly with 15
pieces and 2 agents corresponds, in the worst case, to an AOG with 120 nodes and 1120
hyper-arcs, and the optimal search on such a graph is a considerably large problem. Anyway,
the hypothesis that all the interconnections between pieces are feasible is a strong assumption
for a general assembly, i.e. not all the adjacent pieces can be connected together. For example,
to assemble a table, made of a plate and 4 legs, the legs cannot be assembled together but only
with the plate. Moreover, it can be noticed that, after the execution of an action, the search
algorithm operates on an AOG with a reduced size, hence the time to generate iteratively the
solution is exponentially descending.



Chapter 5

Experiments

To evaluate the performances and investigate the limitations of our framework, we conducted
three different experiments. Their common denominator was a proof-of-concept assembly
task that we defined purposely, which consisted in the assembly of a corner joint (J) with
three aluminum profiles, i.e. two sides (S1, S2) and a leg (L). The profiles S1 and S2 had the
same length, while L was shorter. Each of them interlocked in a predefined hollow of the
corner joint J: near each hollow a label with the name of the interlocking profile was pasted
(see Figure 5.1).

Figure 5.1 The four pieces used for the proof-of-concept assembly task. The three aluminum
profiles (L, S1, S2) and the corner joint (J).
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For each experiment, the goal was to complete the simple assembly shown in Figure 5.2,
but the experimental setup and the cooperation rules changed to allow a focus on different
aspects.

The first two experiments were pilot ones and they were carried out during the develop-
ment of our framework. They aimed to test:

1. the correct functioning of the dynamic role allocation algorithm, without considering
the kinematic wear values. That is, we wanted to test the software implementation,
with regard to the hyper-arcs costs update operation (section 5.1);

2. the kinematic wear potentialities in recognizing the riskiest postures and keeping track
of the past joint configurations hazard (section 5.2).

These two tests were performed to separately evaluate the functioning of the two main
modules of our framework, i.e. the allocation algorithm results employing an AOG that
changed size and costs dynamically, and the kinematic wear as a tool to describe the joint
wear during the actions performance. For this reason, it was considered sufficient to conduct
the experiment with a single subject. After performing these two unit testings , by joining
the two contributions, we arranged a multi-subject experiment to analyse the functioning of
the overall framework and to evaluate its usability in industrial contexts (section 5.3).

Figure 5.2 The complete assembly.
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5.1 Pilot Experiment: Dynamic Role Allocation testing

This first pilot experiment was designed to check the correctness of the role allocation method.
In particular, we wanted to test the functioning of the hyper-arcs cost updating procedure
and the resulting allocation once these costs dynamically changed. To do this, we arbitrarily
decided the costs meaning and the updating rules.

Experimental Setup The four assembly pieces (L, S1, S2, J) were placed on the top of a
workbench in a shared workspace between the human subject and a Franka Emika Panda
manipulator, which was fixed at the operator’s left. The two aluminum profiles S1 and S2

were placed, one above the other, in front of the human worker, but on the opposite side of
the table, as well as the corner joint J. The profile L, instead, was on the right side of the
table. On another table, placed near the robot workspace, a monitor was located, to show to
the operator the result of the allocation algorithm. In particular, the message consisted in a
sentence: "n. WORKER - OBJECT", where n was a progressive number encoding that the
action to be executed was the n-th, WORKER could be HUMAN or ROBOT, and OBJECT
could be L, S1, S2, or J. In Figure 5.3, the experimental setup is presented. Such a pilot
experiment was conducted with one subject (gender: male, age: 29 years, height: 182 cm).

Costs meaning and updating procedure The atomic actions of the task were: (a1) pick
the corner joint J from its initial position and place it on the workbench closer to the human
operator, (a2) pick and insert S1 in the upper hollow of J, (a3) pick and insert S2 in the hollow
of J at the operator’s left, (a4) pick and assemble L in the hollow of J at the operator’s right,
(a5) pick the complete assembly and place it on the additional table, further from the human.
In this experiment, we fixed the assembly sequence to test the allocation algorithm, namely,
the five actions had to be executed in this order: a1, a2, a3, a4, and a5. The variability here
was implemented by assigning each one of these actions either to the human worker or to
the robot, according to the hyper-arcs cost that changed during the performance. The atomic
actions are shown in Figure 5.4, Figure 5.5, Figure 5.6, Figure 5.7, and Figure 5.8. For the
robot, the atomic actions were defined in the same way. In all our experiments, for the sake
of simplicity, the positions of the assembly pieces to be handled by the robot were directly
inserted into the robot script.

This first experiment aimed to test the dynamic allocation process, i.e. the correct
updating of the hyper-arcs costs, which is the base of a successful role allocation output.
Therefore, we arbitrarily assigned the hyper-arcs costs without any reference to a specific risk
indicator V (t). However, such costs were determined by roughly evaluating the ergonomics



5.1 Pilot Experiment: Dynamic Role Allocation testing 47

Figure 5.3 Experimental setup. The human worker and the robot co-worker shared the
workbench where the assembly pieces were placed. A monitor informs the human worker of
allocation results.

of each action performance. We assigned a higher cost to the hyper-arc modelling an action
that we retained less ergonomic and vice versa. In Table 5.1, the costs that were assigned at
each action performed by the human are listed in column cnominal

a,wh
, while the cost of robot

actions remained fixed at cconst =CR = 35 (column ca,wr).
To handle the costs updating, a variable named cumulRiskScoreH was defined. It kept

track of the human performance by adding to its initial value the cost of the executed action.
Then, at the end of each action ak, it was possible to know the current accumulated score
cumulRiskScoreH(tk) and also make a prediction on the score obtained in the case the human

Figure 5.4 Action 1: pick (left) and place (right) the corner joint J
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Figure 5.5 Action 2: pick (left) and assemble (right) the aluminum profile S1

Figure 5.6 Action 3: pick (left) and assemble (right) the aluminum profile S2

Figure 5.7 Action 4: pick (left) and assemble (right) the aluminum profile L

Figure 5.8 Action 5: pick (left) and place (right) the entire assembly
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Table 5.1 Action costs for the human worker and robot

action ak cnominal
ak,wh

cak,wr

a1 10 35
a2 20 35
a3 15 35
a4 5 35
a5 30 35

executed the next action ak+1:

cumulRiskScoreH(tk+1)
pred = cumulRiskScoreH(tk)+ cnominal

ak+1,wh
.

Such cumulRiskScoreH(tk+1)
pred became the new cost of the human hyper-arc modeling

ak+1:

cnew
ak+1,wh

= cumulRiskScoreH(tk+1)
pred = cumulRiskScoreH(tk)+ cnominal

ak+1,wh
.

We expected the allocation to work in this way:ak+1 allocated to human if cnew
ak+1,wh

<CR

ak+1 allocated to robot if cnew
ak+1,wh

≥CR

(5.1)

If action ak+1 was assigned to the robot co-worker, then the accumulated cost was reset:
cumulRiskScoreH(tk+1) = 0.

Experimental Results By considering non zero initial conditions (cumulRiskScoreH(0) =
20) the results of the cooperative assembly are shown in Figure 5.9. The first action was
allocated to the human, since, due to the non zero initial condition, cnew

a1,wh
= 20+10= 30<CR.

The second action, instead, was allocated to the robot, since cumulRiskScoreH(t1) = 30 and
adding the nominal cost of action a2 yielded cnew

a2,wh
= 30+20 = 50 >CR. The dashed line in

red shows the resulting cumulRiskScoreH in the case the human would have performed a2

(cumulRiskScoreH(t2)pred = 50).
Since the robot executed a2, cumulRiskScoreH was reset (cumulRiskScoreH(t2) = 0), then
the cost of hyper-arc modeling a3 was cnew

a3,wh
= cnominal

a3,wh
= 15 <CR and the algorithm assigned

a3 to the human.
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Figure 5.9 (Top) Snapshots of the experiment. (Bottom) cumulRiskScoreH value across
the five actions (blue), the resulting values in case a damaging action would be assigned to
the human (dashed red line), the robot hyper-arcs cost CR (black) working as a threshold on
cumulRiskScoreH.
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After a3 we had cumulRiskScoreH(t3) = 15, while cumulRiskScoreH(t4)pred = 15+5 = 20:
a4 was allocated to the human, due to cnew

a4,wh
= 20 <CR.

The last action, instead, was allocated to the robot: the predicted value cumulRiskScoreH(t5)pred

= 20+30 = 50 (dashed red line) changed the cost of hyper-arc modeling a5 to be cnew
a5,wh

=

50 >CR. The last allocation reset again the cumulRiskScoreH value.
The cumulRiskScoreH indicator that we designed for this unit testing, mimed the kine-

matic wear behavior, by increasing when the action was assigned to the human, decreasing
otherwise, and being exploited also to predict its future values, the new hyper-arcs costs.
Clearly, such a discrete indicator could not module the increasing and decreasing trends
according to the monitored joint angles, taking into account how the action were actually per-
formed. Nevertheless, it allowed us to prove the correctness of the software implementation
of our framework, concerning the dynamic update of the hyper-arcs cost, a mainstay for a
correct allocation result, and of the optimal search AO* that ran on an AOG that dynamically
changed size and costs. It should be noted that the subject wore the Xsens suit, an IMU-based
suit for the tracking of his joint angles. The reason was to collect some data we used for
the kinematic wear testing: however, this was not the objective of the just discussed pilot
experiment.

5.2 Pilot Experiment: Kinematic Wear testing

In this second pilot experiment, we tested the kinematic wear characteristics and its capability
to recognize the hazardous body configuration and track the history of joint wear. To do so, a
single subject (gender: female, age: 25 years, height: 158 cm) was asked to complete the
assembly in represented Figure 5.2 composed by the pieces illustrated in Figure 5.1, as in
the previous experiment (section 5.1). In this experiment, however, the initial position of
the pieces was set differently. The latter were located in the workspace in a way to force
the subject, during the experiment, to assume body configuration with high level of risk
according to RULA. For certain actions, a specific body joint was pushed toward the limit
of its Range of Motion to the extent possible. The aim was to investigate the resulting
trend of the kinematic wear and verify its capability to account for joint usage over time. In
Figure 5.10, the experimental setup is shown. The aluminum profiles were placed on the
workbench, S1 and S2 at the subject’s left, while L at her right. Near the workbench there
was a shelf 171 cm tall, with J on the highest ledge. As in the previous experiment, when the
assembly was completed, it had to be moved from the assembly area. In this case, the final
destination was another ledge of the shelf. The subject wore the Xsens suit, to track her joint
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Figure 5.10 Experimental setup. The workstation consisted in a workbench in front of the
human operator and in a shelf at the human’s right. The corner joint J was on top of the
shelf, while the aluminum profiles were on the workbench. The human wore an Xsens suit
as motion-capture system. The human operator assumed the minimum risk position (right),
i.e. RULA score was about 1 for all the monitored joints.

angles. In this experiment, we monitored shoulder, elbow, and wrist of the dominant arm
(the right one: our subject was right-handed), trunk, and neck (as discussed in section 3.3).

In this experiment, the human was asked to perform each assembly action separately from
the others, at most with the right arm (the monitored one) and to start and finish, to the extent
possible, each execution in the minimum risk posture (shown in Figure 5.10 on the right), i.e.
the body configuration in which all the monitored joints had minimum RULA score. It should
be noted that it was not always possible for the subjects to reach this minimum score (i.e.
for all joints, in all cases). This was most likely due to the Xsens system sentivity to sensor
movements during the acquisition, which may affect the data, and to the fact that the subject
was not always matching the instructed posture, i.e. the joint angles that corresponded to the
minimum risk posture according to RULA. However, the expected results were not affected
by this initial condition. The reason behind such experimental protocol consisted in proving
that, given any action that required to move all the joints, the kinematic wear could give a
description of how much and how (i.e. crossed portions of RoM) the single joint was used in
that action performance.

Moreover, to have a kinematic wear-based description of each action in the task was
mandatory to allow the allocation algorithm, which used the kinematic wear as the risk
indicator, to predict the risk associated to each possible future action, saving the human from
hazards (as shown in subsection 5.2.2).
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5.2.1 Kinematic Wear-based Action Description

Before starting with the description of each single action in terms of kinematic wear, it
was necessary to introduce how the monitored quantities were mapped into body segments
movements.

From human body generalized coordinates to body segments motions: the adopted
conventions To measure the human worker joint angles we used an IMU-based suit (Xsens
suit xsens.com), with 17 IMU sensors, that is advantageous for the user readiness and the
unlimited field of view of the system; otherwise other motion capture systems could be
employed, such as infrared or RGB-D camera systems running skeleton tracking algorithms.
In particular, the latter looks promising since it does not require the worker to wear any
sensorized suit or marker, but it is prone to occlusions. The Xsens suit captured the human
kinematic configurations, in terms of joints relative angles and links positions. The joint
values were then processed by the ergonomic risk assessment method, returning the kinematic

wear index Vi(t) for each joint i.
The recorded angles value was interpreted according to the position and orientation of

the corresponding joint frame. As we can see in Figure 5.11, each framework has the origin
at the joint level and it is rotated so that:

• x-axis is normal to the screen, pointing outwards,

• y-axis lies on the screen plane, pointing rightwards,

• z-axis lies on the screen plane, pointing upwards.

The red squares highlights the frames we considered in this experiment. From now on qx, qy,
and qz refer to rotations around x, y, and z-axis, respectively.

Shoulder For shoulder joint, we monitored the x, y, and z components of q14, in
Figure 5.11. An increasing value of qsh,x(t) meant the worker was bringing his right arm
close to the body (adduction), a decreasing trend of qsh,x(t) described the opposite movement
(abduction). An increasing value of qsh,y(t) meant the worker was moving his right arm
posteriorly (extension), a decreasing trend of qsh,y(t) described the opposite movement
(flexion). An increasing value of qsh,z(t) meant the worker was performing an internal
rotation of his right arm, a decreasing trend of qsh,z(t) described the opposite movement (an
external rotation towards midline).

xsens.com
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Figure 5.11 X-sens human model. The red squares highlights the considered frames.
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Elbow For elbow joint we monitored only the y component of q15, in Figure 5.11. A
decreasing value of qel,y(t) meant the worker was bringing his right lower-arm up close to
the right upper-arm, towards an angle equaling zero between the two segments (flexion), an
increasing trend of qel,y(t) described the opposite movement (extension).

Wrist For wrist joint we monitored the x, y, and z components of q16, in Figure 5.11.
An increasing value of qwr,x(t) meant the worker was bringing his right hand down (flexion),
a decreasing trend of qwr,x(t) described the opposite movement (extension).
An increasing value of qwr,y(t) meant the worker was bending the wrist to the little finger
(ulnar deviation), a decreasing trend of qwr,y(t) described the opposite movement (radial
deviation).
An increasing value of qwr,z(t) meant the worker was bringing his right hand palm pointed
towards the floor (pronation), a decreasing trend of qwr,z(t) described the opposite movement
(supination).

Trunk For monitoring the trunk movements, the pelvis joint q7 (see Figure 5.11) was
monitored in its components qtr,x(t), qtr,y(t), and qtr,z(t). An increasing value of qtr,x(t)

meant the worker was bending his trunk rightwards, a decreasing trend of qtr,x(t) described
the opposite movement (left bending).
An increasing value of qtr,y(t) meant the worker was performing a simultaneous forward
pelvic tilt and flexion of the spine (flexion), a decreasing trend of qtr,y(t) described the
opposite movement (extension).
An increasing value of qtr,z(t) meant the worker was twisting his trunk leftwards, a decreasing
trend of qtr,z(t) described the opposite movement (right twist).

Neck Since the quantities we measured for a specific joint were defined with respect to
the "joint father", in this case for monitoring and describing movements that RULA associated
to the neck, we obtained the angles that we looked for (qne,x(t), qne,y(t), and qne,z(t)) by
summing the components of the head with respect to the neck (q18) and of the neck with
respect to the trunk (q17): in this way, we had the qne describing the movement of the head
with respect to the trunk. An increasing value of qne,x(t) meant the worker was tilting his
head rightwards, a decreasing trend of qne,x(t) described the opposite movement (left tilt).
An increasing value of qne,y(t) described the worker head flexion, a decreasing trend of
qne,y(t) described the opposite movement (extension).
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qi,axis[rad] + -
qsh,x adduction abduction
qsh,y extension flexion
qsh,z internal rotation external rotation
qel,y extension flexion
qwr,x flexion extension
qwr,y ulnar deviation radial deviation
qwr,z pronation supination
qtr,x right bending left bending
qtr,y flexion extension
qtr,z left twist right twist
qne,x right tilt left tilt
qne,y flexion extension
qne,z left twist right twist

Table 5.2 From i-th joint configuration to the corresponding segment movements. The two
columns "+" and "-" indicate the movement described by a positive and negative rotation
around the corresponding axis.

An increasing value of qne,z(t) meant the worker was twisting his head leftwards, a decreasing
trend of qne,z(t) described the opposite movement (right twist).

With in mind the correspondences listed in Table 5.2, we were able to interpret the qi,x,
qi,y, and qi,z evolution during each action performance in terms of human body segment
movements.

Figure 5.12 Action 1: pick and place J on the workbench

Action 1: pick and place J on the workbench The human worker was asked to reach the
corner joint at the highest ledge of the shelf and to place it in the assembly area.
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Figure 5.13 Action 1: effects at shoulder level. (top) joint angles, (bottom) resulting RULA
score at each instant.

In Figure 5.13, the top graph shows qsh,x (in blue) and qsh,y (in red) trends. The decreasing
trend of qsh,y means that the human was flexing the right arm to reach the piece on top of the
shelf; the plateau corresponds to the grasping phase; then the movement continued in placing
the object in the new configuration, closer to the operator, so the arm was not too much far
from the body anymore (qsh,y closer to zero). The qsh,x curve shows that for reaching and
grasping the object the arm was abducted, returning to the initial posture during the "place
phase". The bottom graph, instead, shows the shoulder risk level during the performance of
this action, that was maximum during the arm flexion and abduction once J was reached.

In Figure 5.14, the elbow extension movement was described by the increasing trend of
qel,y (red line), while the blue line corresponds to the angle the shoulder described rotating
around the z-axis, qsh,z. These two components were put together due to the risk assigned to
the lower arm position according to the RULA tables we used for the risk evaluation (see
section 3.3). Such a risk is shown in the bottom graph and the highest score is associated to
the elbow extension (rad 0) performed for reaching the object J.

In Figure 5.15, the top graph presents qwr,x (in blue), qwr,y (in red) and qwr,z (in yellow)
trends. The qwr,x values show that once the object J was reached, to grasp it the wrist
performed a flexion. The qwr,y curve shows an almost constant ulnar deviation that increased
in the object placement. The qwr,z curve starts from 0 rad, corresponding to have the hand
palm pointing towards body midline (neutral position). Then the pick motion required the
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Figure 5.14 Action 1: effects at elbow level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.15 Action 1: effects at wrist level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.16 Action 1: effects at trunk level. (top) joint angles, (bottom) resulting RULA
score at each instant.

hand pronation; the opposite rotation was necessary to restore the initial configuration. In the
bottom graph, the risk score shows a higher risk in the grasping phase.

Figure 5.16 describes the trunk angles, that remained almost constant for the whole
duration of action a1, since to reach the object in its position it was not required to bend the
trunk. Therefore, the risk associated to the trunk of this action was small, as shown in the
bottom graph.

Figure 5.17 shows in the top graph the neck angles, in particular qne,z (in yellow) described
a right twist, and qne,x (in blue) a right tilt, due to the object J on top of the shelf at the
operator’s right. While the value of qne,y described an almost constant neck flexion. The
corresponding ergonomic risk is shown in the bottom graph.

Figure 5.18 illustrates the kinematic wear trend for each of the monitored joints. Ac-
cording to Equation 3.16, the increase of Vi is proportional to the risk accumulated during
the performance of a1, represented by the term 1

C
∫ t1

0 Gi(τ)dτ (shown in the bottom graph).
As we expected, since to reach the object the human needed to stretch the right arm and to
rise it almost approaching the RoM limit, the shoulder was the joint most at risk. On the
other hand, the trunk was the less stressed joint, since any trunk bending was not necessary
to accomplish the a1 goal.
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Figure 5.17 Action 1: effects at neck level. (top) joint angles, (bottom) resulting RULA
score at each instant.

Figure 5.19 Action 2: pick and assemble the aluminum profile L

Action 2: pick and assemble the aluminum profile L The subject was asked to grasp the
profile L at her right and to assemble it in the assembly area. Since the object was really close
to the human right hand, as well as the corresponding hole where L interlocks, this action
required a low effort, little movements for all the joints, except for the neck: the human had
to perform the neck flexion and a rightward twist, in order to allow the gaze pointing the
object (Figure 5.24). Figure 5.25 shows, hence, the neck as the most at risk joint for the
execution of a2.
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Figure 5.18 The kinematic wear trend for all the monitored joints during the performance
of a1, starting from zero initial conditions (top). The increase of each Vi depends on the
accumulated risk during a1 (bottom).
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Figure 5.20 Action 2: effects at shoulder level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.21 Action 2: effects at elbow level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.22 Action 2: effects at wrist level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.23 Action 2: effects at trunk level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.24 Action 2: effects at neck level. (top) joint angles, (bottom) resulting RULA
score at each instant.

Figure 5.26 Action 3: pick and assemble the aluminum profile S1

Action 3: pick and assemble the aluminum profile S1 This action consisted in grasp and
assemble the aluminum profile S1 that was at the human’s left. The corresponding hollow
for S1 was the one of J pointing upwards. As already mentioned, the human was asked to
perform each action with the right arm, since it was the one under control. Therefore, to
reach object S1 in its position, shoulder was raised (Figure 5.20), the lower arm extended
(Figure 5.21), the trunk performed a flexion and a left twist (Figure 5.23). This action was
equivalently risky for every joint (as shown in Figure 5.32).
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Figure 5.25 The kinematic wear trend for all the monitored joints during the performance
of a2, starting from zero initial conditions (top). The increase of each Vi depends on the
accumulated risk during a2 (bottom).
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Figure 5.27 Action 3: effects at shoulder level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.28 Action 3: effects at elbow level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.29 Action 3: effects at wrist level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.30 Action 3: effects at trunk level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.31 Action 3: effects at neck level. (top) joint angles, (bottom) resulting RULA
score at each instant.

Figure 5.33 Action 4: pick and assemble the aluminum profile S2

Action 4: pick and assemble the aluminum profile S2 Action a4 consisted in grasping
and assembling the profile S2 with the correct J hollow (the left one). Similarly to a3, since
the grasping phase was performed with the right hand and the object S2 was at the operator’s
left, the shoulder was raised (Figure 5.34), the lower arm extended (Figure 5.35), the trunk
bent ((Figure 5.37)). Then all the joints were at a comparable level of risk at the end of
the execution (Figure 5.39). The difference with respect to a3 was in the assembling phase:
to interlock S2 in the left hollow J required to perform a limited arm flexion, than the one
necessary to insert S1 in the upper hole. This is the reason why the shoulder column is taller
for a3 than for a4.
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Figure 5.32 The kinematic wear trend for all the monitored joints during the performance
of a3, starting from zero initial conditions (top). The increase of each Vi depends on the
accumulated risk during a3 (bottom).
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Figure 5.34 Action 4: effects at shoulder level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.35 Action 4: effects at elbow level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.36 Action 4: effects at wrist level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.37 Action 4: effects at trunk level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.38 Action 4: effects at neck level. (top) joint angles, (bottom) resulting RULA
score at each instant.

Figure 5.40 Action 5: pick and place the entire assembly on the shelf

Action 5: pick and place the entire assembly on the shelf This action consisted in
moving the completed assembly away from the assembly area and in positioning it on the
shelf. The performance of this action resulted in having the trunk more at risk than the other
joints, as shown in Figure 5.46. This is due to the fact that the shelf was at the operator’s right,
then, once the entire assembly was grasped, the human needed to rotate the trunk rightwards,
increasing the RULA score associated to this joint.
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Figure 5.39 The kinematic wear trend for all the monitored joints during the performance
of a4, starting from zero initial conditions (top). The increase of each Vi depends on the
accumulated risk during a4 (bottom).
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Figure 5.41 Action 5: effects at shoulder level. (top) joint angles, (bottom) resulting RULA
score at each instant.

0 5 10 15
time [s]

-100

-80

-60

-40

-20

0

de
g

q elbow

q sh,z

q el,y

0 5 10 15
time [s]

1

2

3

4

5

R
U

LA
 s

co
re

G elbow

Figure 5.42 Action 5: effects at elbow level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.43 Action 5: effects at wrist level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.44 Action 5: effects at trunk level. (top) joint angles, (bottom) resulting RULA
score at each instant.
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Figure 5.45 Action 5: effects at neck level. (top) joint angles, (bottom) resulting RULA
score at each instant.

5.2.2 Overview of the results

Regarding the formalization of the kinematic wear (Equation 3.16), the experimental results
suggest that:

• it increased steeply if the current joint angles belonged to a portion of RoM of higher
risk;

• at the end of the performance of action ak, Vi(tk) depended also on the time spent in
each portion of RoM that joint i crossed.

Moreover, we can appreciate that such a risk indicator can describe every action, allowing
a distinction among them according to which joint it is stressed at the most: according to
the considered subject performance, a1 resulted to be more risky for the shoulder, a2 for the
neck, and a5 for the trunk, and we can understand it by just looking at the kinematic wear

behavior, without checking joints configurations.

In the experiment described in section 5.1, the human status was updated just consider-
ing if an action was performed or not, without accounting for the way the action was
executed. Instead, in this experiment, the analysis of each single action in the task in terms
of the chosen ergonomic risk indicator was necessary to allow a prediction of the future risk,
starting from the current effective human status. In particular, this analysis corresponds to
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Figure 5.46 The kinematic wear trend for all the monitored joints during the performance
of a5, starting from zero initial conditions (top). The increase of each Vi depends on the
accumulated risk during a5 (bottom).
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the calibration phase, a subject-specific step that has to be performed before the effective
HRC, since it allows to find the prediction model parameters (see section 3.3). Once such
parameters were computed, we simulated a cooperative task envisioning four repetitions of
the assembly sequence. The sequence was fixed: a1, a2, a3, a4, and a5. The variability was
in assigning each of these action either to the human worker or to the robot. The hyper-arcs
costs were assigned as described in section 3.1, while the cost of robot hyper-arcs was such
as to assign the action to the robot when at least one V̂i(tk+1) > Vth, where the Vth = 0.8.
In Figure 5.47, the kinematic wear trend for each joint during the whole task is shown. In
particular, it can be appreciated that:

• the charge phase was different for each joint, according to the level of involvement in
the current action;

• the discharge phase, that occurred when the action was allocated to the robot, allowing
the human to rest, was equal for all the joints, since it did not depend on the Ergonomics
Assessment Function Gi(q).
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Figure 5.47 The kinematic wear trend for each joint during the performance of a cooperative
assembly. The increasing trend occurred when the action was allocated to the human operator,
the decrease when the action was allocated to the robot.
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Figure 5.48 Experimental Setup. The workstation had a "L" shape, the assembly pieces
were placed at the operator’s left as well as the robot co-worker; in front of the human, the
assembly area and the monitor to read the allocations were located. The human wore the
Xsens to record the joint angles.

5.3 Multi-subject Experiment

Once the correctness of the role allocation process and the properties of the kinematic wear

as risk indicator were evaluated, we carried out a multi-subject experiment. The goal was to
test the complete framework functioning, by mimicking an industrial assembly line. Subjects
were asked to work both by themselves and in cooperation with the robot. Then, with the
aid of questionnaires (attached in A), we managed to draw conclusions about the presented
method efficiency and its level of usefulness in industrial contexts.

Experimental Setup The goal of this experiment was to repeat the assembly of the pieces
in Figure 5.1 for ten times, moving it from the assembly area, once each assembly was
completed. As Figure 5.48 shows, the workstation had a "L" shape. On the workbench, at
the subject’s left, the assembly pieces were positioned from the nearest to the further S2, S1,
L, J. The Franka Emika Panda manipulator was on the same workbench. The table in front
of the subject, instead, provided the assembly area, i.e. where the pieces were assembled.
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Moreover, the monitor on the right communicated to the worker the solution of the allocation
algorithm. The human wore the Xsens suit to monitor their joint angles. The five actions
necessary to conclude a repetition were: pick and place J in the assembly area (a1), pick
and insert L in the upper hollow (a2), pick and insert S1 in the left hollow (a3), pick and
insert S2 in the right hollow (a4), move away the entire assembly (a5). In particular, the last
action envisioned the handover of the entire assembly to another human operator, who was in
charge of disassembling the final product and re-positioning the pieces in their original site,
to simulate an industrial conveyor roller. Furthermore, to replicate the production line time
constraints typical of industrial setups, we introduced the takt time, the manufacturing term
to describe the required product assembly duration that was needed to match the demand. In
particular, given that subjects were new to HRC tasks, then maybe not confident to interact
with a robot, and considering the robot speed limitations that avoid it to move too fast, we set
such a time to Ttakt = 38s. The five actions had to be completed within such a time.

Moreover, since the right arm was the monitored one, the subjects were asked to reach
and grasp each object with the right hand, then they could handle it with both the hands.
Differently from the pilot experiments, the sequence of actions was not fixed: while actions
a1 and a5 were fixed as the first and the last of the assembly sequence, the order of the other
three actions was online decided by the AO*. Each action could be assigned either to the
human or to the robot, except for the last one, always assigned to the human. The hyper-arcs
costs were assigned as described in section 3.1, while the cost of robot hyper-arcs was set to
CR = 2.5, meaning that the allocation to the robot happened when V̂i(tk+1)≈Vth, where the
Vth = 0.8.

Experimental Protocol As mentioned before, the task consisted of ten repetitions of the
assembly sequence in two different modalities, one in cooperation with the robot (HRC

mode), the other without any co-worker (H only mode). The order in which the two task
were executed changed randomly. We proposed the experiment to twelve healthy subjects (2
girls and 10 boys 28±3 year-old). Half the subjects starts with the HRC modality, the other
half with the H only one.

HRC mode In this condition, the human was asked to complete the task with the robot
aid. Therefore, to know which action was the next one to perform and which was the agent
allocated, the human had to look at the monitor, where the allocation algorithm results were
printed. If the action was allocated to the human, it meant he/she had to pick and place the
indicated object (see Figure 5.49). On the other hand, if the action was allocated to the robot,
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Figure 5.49 Pick and place object J action assigned to the human worker.

then, the robot reached, grasped, and handed over the concerned object to the human worker
(see Figure 5.50). The positions of the assembly pieces to be handled by the robot and the
handover position (chosen to make the handover as much natural as possible) were directly
inserted into the robot script. Moreover, we programmed the robot velocity to ensure to
complete each repetition within Ttakt .

H only mode In this modality, the human had to perform the ten repetitions alone,
without the robot help. The worker could choose the assembly plan, as long as pieces were
picked one at a time. To comply with the takt time constraint, we asked the human to handle
a chronometer, to be sure to start the new repetition after the Ttakt was expired.

After the execution of each task modality, the subject were required to answer to a standard
questionnaire, the NASA Task Load Index (NASA-TLX). Therefore, each subject filled two
NASA questionnaires, one after H only and another after HRC. It is a widely used, subjective,
multidimensional assessment tool that rates perceived workload in order to assess a task,
system, or team’s effectiveness or other aspects of performance. In addition, at the end of the
two experiences, a custom questionnaire was proposed to evaluate the HRC modality. Unlike
the NASA TLX, this custom questionnaire is not validated, but it can give useful information
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Figure 5.50 Pick and place object J action assigned to the cobot.

with regard to some aspects of the presented framework, like the ergonomic role allocation
efficiency and the usability in industrial environments. Both the questionnaires are attached
in A. Hereafter the experimental protocol follows:

1. wear and calibrate Xsens, according to the subject body measurements

2. parameter calibration procedure: the task atomic actions were described in terms of
kinematic wear to compute the prediction model parameters

3. RANDOM choice (to avoid biases in the results due to training effects) of which task
the subject had to perform first, between the H only mode or the HRC mode

4. task according to H only (or HRC) mode

5. questionnaire NASA TLX to compile in relation to the just performed task

6. task according to HRC (or H only) mode

7. questionnaire NASA TLX to compile in relation to the just performed task

8. custom questionnaire to compile in relation to the task in HRC mode
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Parameter Calibration Procedure Before starting the first task performance, a calibration
procedure was performed. Such a procedure required the characterization of each assembly
action in terms of kinematic wear (see section 5.2) and it was necessary to compute the
prediction model parameters αk,i and βk,i for each action ak and each joint i (see section 3.3).
Due to the design of such prediction model parameters, an error in prediction meant that,
during the online performance, each action ak was executed in a different manner with
respect to the one recorded in the calibration phase. To reduce this mismatch between the
same action performances, we designed a calibration phase in which each single action ak

was repeated several times, and then the obtained αk,i coefficients were averaged. We set
to three the number of repetitions; however, a higher number of repetitions could lead to
have parameters mirroring the standardized performance of each action. Another approach,
that could be used to find such parameters, was to compute them during the online task
performance by means of a weighted average. By associating a higher weight to the αk,i

returned by the last time action ak was executed, the system would have learned how the
worker was used to execute each action.

Experimental Results The results collected by analysing the subjects’ answers to the
NASA TLX questionnaire are shown in Figure 5.51. The paired column stand one for the
experiment in H only mode (the blue one), and one under the HRC conditions. The aspects
the questionnaire evaluates are: the required Mental Demand (MD), Physical Demand (PD),
Temporal Demand (TD), the Performance (P) quality, the spent Effort (E), and the felt
Frustration (F). Each of these aspects can be rated from 0 to 100 (each notch counts as
5). Then, by means of an additional table (see A), that presents all the pairs of the aspects
mentioned above, it is possible to choose, for each pair, which has been more relevant in the
task accomplishment. In this way, one can determine how much each item is weighted in
the subject’s experience in the just performed task. In particular, such weights are expressed
in percentages and the overall sum leads to 100%. Therefore, the bar height in Figure 5.51
encodes the mean value of scores given by all the subjects to that aspect, while the percentage
was found by averaging the weights given to that aspect. For each feature, such percentages
were almost the same in the two conditions, suggesting that the two tasks can be compared
by inspecting the differences in each single aspect. Even though the Mental Demand resulted
low for both the conditions, it is a bit higher for the HRC mode: this may be due to the fact
that checking on the monitor which action had to to be executed next and the corresponding
allocated worker, was kinf of stressful. However, the development of an intuitive interface
was not the primary objective of this work, since our interest was just to communicate to the
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worker the allocation solution. Future works could improve such communication channel,
that of course may influence a HRC experience.

On the other hand, the Physical Demand is absolutely higher for the H only mode.
Moreover, the difference between the two conditions resulted to be statistically significant
according to the Wilcoxon signed-rank test, a non-parametric statistical hypothesis test
(Woolson (2007)). The p-value returned by the comparison for PD in the two experimental
conditions is p= 0.0059, while the test statistic is W = 1.5. Considering that the critical value
of W equals 14 (according to the number of subjects and of the chosen critical p = 0.05),
since W < 14, we have a statistically significant evidence about such a difference. Since the
final goal of our presented framework was to ensure ergonomic working conditions to the
human operators, such a result reveals that our method is promising in this direction.

The Temporal Demand for the two modalities was perceived to be similar: that is what
we expected by fixing the takt time Ttakt for the two experimental conditions. Nevertheless,
subjects considered the H only mode less demanding, since they could complete the assembly
without waiting the robot intervention.

For what concerning the Performance, since the task was simple, all the subjects were
satisfied with their work in both the two conditions (the bar height represents the level of
failure, that is very low). Anyway, to reach the same level of Performance, subjects retained
to have worked harder for the task accomplishment in the H only mode: the difference
between the two modalities was again statistically significant (the p-value returned by the
comparison for E in the two experimental conditions is p = 0.0098, while the test statistic is
W = 7.5). As for the Physical Demand, to have such a contrast between the required Effort
suggests that the framework was improving the human ergonomics. However, since the
number of subjects involved in this experiment is limited these results should be considered
preliminary, even though promising.

Finally, even if there was not a statistically significant difference, the level of Frustration
was higher for the H only mode. This could be because, with the robot aid, the assembly
rhythm was marked by the robot timing of performing the actions allocated to it and it was
steady through the repetitions, while, without any co-worker, when the human finished the
repetition before the takt time Ttakt expired, he had to wait to start a new repetition. Such a
waiting might have irritated or annoyed subjects.

By means of the custom questionnaire (see A) we aimed to investigate three main aspects
of our framework: the efficiency of the role allocation algorithm, the granted ergonomics
conditions and the usability of the presented method in industrial environments. Hereafter
the asked questions:
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Figure 5.51 Results by collecting the subjects’ answers to the NASA (Task Load indeX)
TLX questionnaire. The bars height correspond to the mean value of the subjects score for
each task aspect: Mental Demand (MD), Physical Demand (PD), Temporal Demand (TD),
Performance (P), Effort (E), Frustration (F). The two matched bars are for the experiment in
H only (blue one) and HRC (red one) mode.

51%

78%

10% 10%

a1 a2 a3 a4

action

0

20

40

60

80

100

120

nu
m

be
r 

of
 a

llo
ca

tio
n 

to
 th

e 
ro

bo
t

Figure 5.52 How many times each action has been allocated to the robot during the coopera-
tion. Considering all the subjects (twelve), each action was executed either by the human or
by the robot for 120 times in total. On the top of each bar the number of allocation to the
robot for each action in percentage is expressed.
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1. I was glad to take a break when the task was allocated to the robot

2. The robot was hindering me in the task accomplishment.

3. It was easy to understand when I had to take action.

4. When I was tired, the robot was not able to intervene.

5. I feel safe when collaborating with the robot.

6. The robot can choose correctly which action is too demanding for me.

7. I would suggest to use the robot for this kind of tasks.

8. The robot help makes me feel less fatigued at the end of the task.

9. I had to wait for the system to inform me about the next task.

Each one of the nine questions was referred to one or more the just mentioned categories,
to which subjects had to answer by means a 7-point Linkert scale, from "Not at all" to
"Extremely". In Figure 5.53, on the x-axis there is the question number, while the bar height
represents the mean score given to each question. The score is positive when the answer
is positive and vice-versa. The bar color represents the category to which each question
"belongs". As we expected, the results reveal that subjects were glad to take a break when
the task was allocated to the robot, leading them to feel less fatigue at the end of the whole
task. Nevertheless, for some subjects the task was so easy that they did not want to be helped.
This could be because we set a too low threshold value, but also due to a limited number of
repetitions our experiment provided.

However, the majority of subjects perceived also to be helped by the robot in the most
stressful tasks. That is proved by the fact that the action allocated the most was a2 (78%
of a2 was allocated to the robot, that is 93 times on 120, see Figure 5.52), that required to
grasp object L, positioned in the furthest location from the human, and inserted it in the
upper hollow of J demanding to rise the right arm (i.e. shoulder more at risk). Action a1 was
allocated to the robot 51% of times: this is because a5 was always executed by the human,
then at the end of the assembly repetition, the kinematic wear value probably resulted so
close to the threshold, that the allocation of a1 to the robot was triggered. The other two
actions a3 and a4 were most allocated to the human agent, due to their low ergonomic risk.
Overall, the cooperation envisioned a 30% of robot activity, that means a bit more than 1

3

actions were allocated to it. Furthermore, testers stated that they neither waited for the system
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Figure 5.53 Results by collecting subjects’ answers to the custom questionnaire. On the
x-axis the question number, on the y-axis, the average score. A positive score means a
positive answer and vice versa. Questions were designed to evaluate: granted Ergonomics,
Role Allocation efficiency and Usability of such a framework.

to inform them about the next task nor considered the information pace too rapid: it is a good
outcome, since it means the allocation algorithm computational time does not impede the
task flow. Finally, we asked to subjects if they would suggest to employ this framework for
this kind of tasks. The answer was positive: they felt to be safe by cooperating with the robot
and it did not hinder them in the task accomplishment.



Chapter 6

Conclusions

In this thesis we proposed a method that envisions a dynamic human-robot role allocation
based on an online evaluation of the ergonomic risk: by intervening on the roles distribution
within the human-robot team, we aim to reduce the human weariness at the end of the
collaborative performance.

We tested our framework by arranging an assembly, a very common task in industrial
environments. For task decomposition and as allocation model we used an adapted AND/OR
Graph (AOG), where the actions that form the task, potentially executed by all the agents,
are modeled with different hyper-arcs (section 2.1 and section 2.2). To each hyper-arc, that
represents a human action, an ergonomic cost is assigned. Such costs are updated during
the whole duration of the task: each of them encodes a predicted physical risk the worker
would have by executing the corresponding action, starting from their current conditions. To
retrieve such a value, a prediction model is needed (section 3.1). The hyper-arcs costs guide
the online AO* search designed to find the optimal path, returning the next action to execute
and the allocated agent (section 2.3). According to the simulation results, the computational
time necessary to AO* for returning a solution, even with a fairly big AOG size, allows the
workers to perform the task without any interruption of the work flow (section 4.2). The
outcome of the multi-subject experiment we conducted confirmed that they did not have to
wait for the system to inform them about the next action to be performed. A drawback of
the implemented AOG to be overcome in the future consists in not providing the possibility
of modeling parallelism, i.e. the allocation algorithm cannot return as a solution two (or
many) actions to be executed at the same time by the two (or many) agents involved. Another
limitation is that the human has not the chance of choosing which action to execute, but
he/she submits it to the allocation algorithm. A future work would be to make the workers
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"free" as long as their status does not evidence any risk and then oblige them to follow the
system instructions.

The costs meaning depends on which human aspect we decide to monitor, which in turn
is related to the cooperative task features. To describe the human physical status, kinematics
or dynamics indicators are needed: the former evaluates the human body configurations
and postures, while the latter takes into account the interaction forces, for instance those
with the manipulated tool. On the other hand, to ensure ergonomic HRC in the case the
task is mentally stressful, indicators that are able to describe the human cognitive load are
more appropriate (section 3.2). Therefore, the designed framework is not coupled with
any specific metrics: any risk the human may encounter when he/she executes the task,
which can be modelled and predicted can be employed in the proposed framework. Since
assembly tasks of lightweight pieces are addressed in this work, to test the functioning of
the overall framework we designed a kinematic indicator, named kinematic wear, which
captures potentially damaging human body configuration. Unlike the traditional indexes,
the kinematic wear is able to model the history of the human worker’s joints wear: when
a risk is found, this is due not only to the current joint angles, but also to the past assumed
configurations (section 3.3). For the design of such an indicator we have been inspired by the
muscle fatigue behavior, that can be modeled as an RC circuit, with charge and discharge
trends. Clearly, since we are not dealing with forces, we cannot state that the kinematic wear

can substitute the information conveyed by a dynamic indicator. However, it may be a good
future challenge to find some correlations between the two: in this way we could rely only on
a motion-capture system, without using neither sensors for measuring the muscle activity nor
force plates for the estimation of the centre of pressure position (section 3.2). As we proved
throughout the conducted experiments (section 5.2), each action can be described in terms
of kinematic wear allowing a distinction among them according to which joint is the most
stressed. In this way, it is possible both to efficiently avoid the human to perform damaging
actions, and to assign to them the risk-free ones. It would be interesting, in the future, to
make this framework able not only to decide on the future actions, but also to inform workers
of the risk they are exposed while executing the task.

The reduced number of tested subjects stops us to claim any strong general consideration
about the capability of such a framework in understanding the human conditions during the
task, and helping workers to end the performance less fatigued and frustrated. Nevertheless,
the results we obtained in the multi-subject experiment (section 5.3) look promising: further
experiments and studies could render more robust the proposed approach.
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Appendix A

Questionnaires

Name   Task    Date

   Mental Demand How mentally demanding was the task?

   Physical Demand How physically demanding was the task?

   Temporal Demand How hurried or rushed was the pace of the task?

   Performance How successful were you in accomplishing what
you were asked to do?

   Effort How hard did you have to work to  accomplish
your level of performance?

   Frustration How insecure, discouraged, irritated, stressed,
and annoyed wereyou?

Figure 8.6

NASA Task Load Index

Hart and Staveland’s NASA Task Load Index (TLX) method assesses
work load on five 7-point scales. Increments of high, medium and low
estimates for each point result in 21 gradations on the scales.

Very Low Very High

Very Low Very High

Very Low Very High

Very Low Very High

Perfect     Failure

Very Low Very High
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For each couple of items, choose which of the two was more important to your 
experience of workload in the task that you just performed. 

Effort 
Or 

Performance 

Temporal Demand 
Or 

Frustration 

Temporal Demand 
Or 

Effort 

Physical Demand 
Or 

Frustration 

Performance 
Or 

Frustration 

Physical Demand 
Or 

Temporal Demand 

Physical Demand 
Or 

Performance 

Temporal Demand 
Or 

Mental Demand 

Frustration 
Or 

Effort 

Performance 
Or 

Mental Demand 

Performance 
Or 

Temporal Demand 

Mental Demand 
Or 

Effort 

Mental Demand 
Or 

Physical Demand 

Effort 
Or 

Physical Demand 

Frustration 
Or 

Mental Demand 
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Rate the following statements for the HUMAN-ROBOT experiment. 
 

CUSTOM QUESTIONNAIRE 
 

1. I was glad to take a break when the task was allocated to the robot.

       
Not at 

all 
     Extremely 

 

2. The robot was hindering me in the task accomplishment.

       
Not at 

all 
     Extremely 

 

3. It was easy to understand when I had to take action.

       
Not at 

all 
     Extremely 

 

4. When I was tired, the robot was not able to intervene.

       
Not at 

all 
     Extremely 

 
5. I feel safe when collaborating with the robot.

       
Not at 

all 
     Extremely 

 

6. The robot can choose correctly which action is too demanding for me.

       
Not at 

all 
     Extremely 

 

7. I would suggest to use the robot for this kind of tasks.

       
Not at 

all 
     Extremely 

 

8. The robot help makes me feel less fatigued at the end of the task.

       
Not at 

all 
     Extremely 

 
 
 

9 

       
Not at 

all 
     Extremely 

 

I had to wait for the system to inform me about the next task.
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Acronyms

AOG AND/OR Graph. iv, vi, viii, xiii, 1, 7, 12–21, 23, 28, 41–43, 45, 51, 88

HRC Human Robot Collaboration. iv, v, 1–3, 7–13, 19, 25, 38, 41, 78, 80, 84, 89

MRTA Multi-Robot Task-Allocation. 1, 4

NIOSH National Institute for Occupational Safety and Health. 1, 10

OWAS Ovako Working posture Analysing System. 1, 9

REBA Rapid Entire Body Assessment. viii, 1, 9, 10

RULA Rapid Upper Limb Assessment. ix, 1, 9, 13, 34–36, 52, 57, 72

RoM Range of Motion. 1, 34–36, 51, 52, 59, 76

SMEs Small and Medium Enterprises. 1

WISHA Washington Industrial Safety and Health Act. 1, 10

WRMD Work-related musculoskeletal disorders. 1, 8, 9

pHRI physical Human Robot Interaction. 1, 2, 5, 6
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