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Abstract

With the technological advancement of the last 20 years, the robotic

surgery has become more and more relevant and advanced, incor-

porating the new developments from the research to make it more

supportive of the surgeon and being able to give him more informa-

tion possible, both before and during the surgery.

The advent of augmented surgery would make possible to display holo-

grams on the camera view from the robot, for instance a 3D model

of the organ that is under surgery (and the surrounding ones) that

deforms while being manipulated. A simulation has to be performed

to keep track on how the virtual soft tissues will deform while being

subjected to the forces that are applied to the real one.

Unfortunately, perform such a simulation is still a complex task for

the mainstream computers to be computed in real time; from that

reason, comes the idea of exploring the possibility of building a pre-

diction model to avoid the necessity of running the simulation in the

real time while the surgery is ongoing and still obtain information

about the deformation of the soft tissue. To do so, it has been nec-

essary to build a simulation to generate a large amount of data that

would then used to train the model, a Neural Network; the network

would be then used instead of the simulation in the loop, being much

faster to execute with respect to the simulation, to fulfill the real time

requirement that such application would have.

The results are promising and this work will serve as base for future

projects and improvements.
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Chapter 1

Introduction

The robotic surgery has become a topic of increasing interest in the last years due

to the recent technological advances and the constant decreasing cost. Robots

such as he daVinci from intuitive Surgical allows the surgeon to perform some

kind of operation that wouldn’t otherwise be possible.

Some surgeons have highlighted an important problem: the view from the camera

during the operation can become unclear due to blood and the surgeon could lose

visual contact with the organ on which the surgery is ongoing while it is being

moved from the robotic instruments. This problem is even more relevant when

dealing with organs such as a kidney, the one that I will take in account: its

surface in a close-up view looks very homogeneous with very few distinguishable

visual features, especially with a restricted view.

To try and solve this problem, there is currently ongoing research in the univer-

sity labs regarding the tracking of human organs using inertial sensors, such as

accelerometers and gyroscopes, to track the actual position and orientation of

the organ while the surgery is going on. To get those feature, it would also be

possible to apply visual markers on the surface of the organ and then estimate

the 3D pose from the camera view.

By having some reliable feature about the organ’s position and rotation, it would

be possible to build an application of augmented surgery: that would allow to

superimpose on the camera video flow that comes from a surgical robot a 3D
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hologram of the human organ on the actual organ, together with its appendices;

in the case of the kidney, for instance, the blood vessels or the urethra.

The augmented reality applied to a surgery can in fact be very helpful not only

to represent the organ itself, but to give contextual information about what is

going on in the region of the body that the surgeon is operating.

The blood vessel connected to the kidney are subjected to a lot of forces and de-

formation while the surgeon is manipulating the organ: study how they behave in

those situation, how they deform or even if some deformation can become prob-

lematic and give information about them can be a very useful tool for the surgeon.

A surgical simulation can be useful for the surgeon itself also to be performed

before the actual surgery, to see which are the motion that can be problematic or

even dangerous, using a personalized model based on the patient’s organ. Obvi-

ously, we cannot attach a large amount of sensors along the surface of the blood

vessels to track how their shape changes while being manipulated.

From that came the main idea for the thesis: build a simulation that could sim-

ulate the deformation of the blood vessel depending on the motion of the kidney

they’re attached to and from that be able to extract data that can be analyzed

in real time while the simulation is going on, by showing some plots on how the

soft tissues are affected by forces, how their position will evolve over time or even

more qualitative information (to detect and advise the surgeon about possible

dangerous situation), based on the available features.

Unfortunately, such a simulation is not yet able to run in real time during the

surgery, being computationally intensive, using the position and rotation data

from the actual kidney while the surgery is going on. For this reason, we decided

to try and see if it could be possible to build a model from the data generated

in the simulation about the deformation of the blood vessels depending on the

position assumed by the simulated kidney to predict the evolution of the position

of veins and arteries.

By using Neural Networks, a very powerful instrument, we can train the model

with the data recorded while the simulation running and then be able to predict

the deformation and the motion of the blood vessels by just specifying the pose
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of the kidney.

The simulation platform chosen is SOFA (Inria), being very focused toward med-

ical simulation and very flexible in terms of control and data recording. The

model of the kidney and blood vessels used in the simulation comes from a CT of

the actual patient: that would make the application very precise because the 3D

model that generates the data and with the surgeon can interact with is actually

true to reality.

It has been necessary to perform a literature study about the techniques to sim-

ulate soft tissues to choose the most appropriate one to use, in addition to the

new findings regarding robotic surgery and the techniques to build a 3D model

of the patient’s organ.

I developed many software instruments, from the simulation and architecture

around it, necessary to send controls, log the state of the simulation and visualize

the data in real time (while the simulation was running) to the components to

prepare the data for the use of Neural Netwoks and the implementation of the

latter and, additionally, the instruments to validate the results coming from the

from the NN and compare them to the output of the simulation.
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Chapter 2

Robotic surgery and personalized

medicine

2.1 Robotics surgery

The field of robotic surgery has born in a period of time where minimal invasive

surgical (MIS) technologies were increasingly being adopted by surgeons, to en-

hance their outcomes; for this reason, there was an increasing demand for safer

operations and greater surgical precision.

The MIS approaches (such as laparoscopy) have different benefits with respect

to the traditional open surgery; reduced wound access trauma, shorter hospital

stay, improved visualization, less postoperative complication and disfigurement

(Ashrafian et al. (2017)). The less tissue trauma and a speedier discharge would,

as a consequence, increase cost-efficiency of the surgery. There were still some lim-

itation associated with the laparoscopic procedures: the lack of tactile feedback,

the 2D view, and the limited degrees of freedom of the laparoscopic instruments.

The first robots for surgery were designed to outperform hand biopsies in terms of

accuracy and surgical precision, as the natural evolution to laparoscopic surgery.

Work with those robot suggested that a programmable computer linked to an

high precision surgical cutting device could offer higher levels of operative accu-

racy when compared with conventional surgical methods. Robots could poten-
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2.1 Robotics surgery

Figure 2.1: Traditional MIS instrument

tially offer more than an equivalent of an open surgery but with smaller incisions,

an operation with a robot would allow a higher level of tissue discrimination, dis-

section and repair. They have advantages in reducing the systemic inflammatory

while providing improved precision and accuracy in surgical technique because

of superior 3D dexterity; in addition it offers potential in future developments

including digitally enhanced analysis of tissues and .

The first surgical robots have been introduced more than thirty years ago, from

that time surgical robots have become more and more relevant due to the tech-

nical benefits of modern robotic platforms. For the surgeon side, technical ad-

vantages the potential for better visualisation (higher magnification) with stereo-

scopic views, elimination of hand tremor allowing greater precision and improved

dexterity as a result of the “robotic wrist”.

To improve the kinematics,large external movements of the surgical hands can

be scaled down and transformed to limited internal movements of the “robotic

hands”; this allow to improves ergonomics and extend the surgical ability to per-

form complex technical tasks in a limited space. The surgeon is able to work in an

ergonomic environment with less stress, achieving higher levels of concentration;
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2.1 Robotics surgery

there may also be less need for assistance once surgery is under way.

The computerized nature of the surgical robot allows integration of real-time and

previously recorded data utilisation, so that it could accommodate complex intra-

operative factors such as compensating for the beating movement of the heart,

making it unnecessary to stop the heart during cardiothoracic surgery (Camarillo

et al. (2004), Ashrafian et al. (2017)).

Current robotic surgical evidence points towards a convincing reduction in post-

operative surgical and non-surgical complications, reduced blood loss, improved

recovery rates, improved cosmesis and reduced length of stay in comparison with

open surgery; The comparison with MIS however is equivocal, although several

studies do show some advantages in length of stay, conversion rate and estimated

blood loss.

In terms of specialist surgeries, the benefits of robotic techniques have enabled

increasingly complex procedures especially in the field of urology: Using an open

approach would be extremely invasive, but using a robotic approach there is po-

tential for a return to full physical fitness in brief time (Pearce et al. (2017));

these are outcome markers that can demonstrate the incremental gains offered

by robotic surgery.

2.1.1 Comparison of the outcome of robotic surgery with

Open surgery and traditional MIS

Tan et al. (2016) performed a systematic review of the literature for the first 30

years of robotic surgery (1985–2015); they identified more then 100 studies on

around 15000 patients.

The studies that compares robotic vs. open surgery (OS), demonstrates lower

blood loss at 50.5%, lower transfusion rate at 27.2%, lower length of hospital stay

at 69.5%, and reduction of 30-day overall complication rate at 63.7% in favour of

robotic surgery.

For robotic surgery vs traditional MIS, the studies demonstrated mildly reduced

blood loss at 85.3% and transfusion rate at 62.1% in favour of robotic surgery
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2.1 Robotics surgery

Figure 2.2: Robotic surgery vs. OP and MIS (From Tan et al. (2016))

but similar length of hospital stay (98.2%) and 30-day overall complication rate

(98.8%). In both comparisons, robotic surgery prolonged operative time (7.3%

longer than open surgery and 13.5% longer than MIS).

Various studies have demonstrated that there still is lack of precise evidence

for the advantages of the robotic procedures: this requires the development of

new validated and robot-specific methodological tools to assess and evaluate this

evolving technology. This includes methodologies to judge element such as specific

quality of life (QoL) and patient reported outcome measures (PROMS) combined

with robust cost-efficacy and economic analyses.

Endoscopic robots The endoscopic robots are the kind of robot I’m interested

for my thesis; they follow the ”first generation” of robots, more limited robots

that are able to perform single tasks without a lot variability in term of move-

ments and tissues (Ashrafian et al. (2017)).
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2.1 Robotics surgery

This ”second generation” of surgical robots have introduced the soft-tissue sur-

gical capability: they are able to remove tissue volumes of predefined size. In ad-

dition there was a strong request from the surgeons and health’s institutions for

a system that could allow augmented MIS surgery for laparoscopy using stereo-

endoscopic platform. for those reason, this generation have been the greatest

expansion of robotic surgery yet.

Camarillo et al. (2004) divides the robot in three categories:

• Passive role: the role of the robot is limited in scope, or its involvement is

largely low risk;

• Restricted role: the robot is responsible for more invasive tasks with higher

risk, but is still restricted from essential portions of the procedure;

• Active role: The robot is intimately involved in the procedure and carries

high responsibility and risk.

While still being limited, those kind of robot are between the Restrictive and Ac-

tive role definition, they’re not autonomous yet but the motion of the instrument

doesn’t depend just on the surgeon control.

The robots allow the access to tissue in places and organ system that would other-

wise be very difficult to reach without recurring to open surgery, without causing

torque or sheer to the tissues. Some tasks could be performed by an human with

basic MIS tools, but they’re difficult to control and they lack force feedback. The

use of this kind of Surgical robots can then be viewed as “extending or enhancing

human capabilities” rather than replacing humans. (Camarillo et al. (2004)

In 2000, the daVinci robot (Intuitive Surgical Inc, Mountain View, CA, USA)

was the second endoscopic robotic system being commercialized; the first one

was the Zeus robotic system from Computer Motion, company that has been

acquired by Intuitive Surgical in 2003; for this reason, the daVinci become the

only commercially available endoscopic robotic system, becoming the most sold

in the market.

Different robot platforms share console and various utility similarities: one plat-

form can be used to train surgeons for teleoperative experience with an another
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2.1 Robotics surgery

Figure 2.3: The complete daVinci robot system

(Deanna et al. (2014)). As those second generation robot are the most widespread

and established platforms in current clinical use, they are the platform on to

which many novel technological innovations are currently being applied. These

range from improved surgical visibility and visual information transfer to im-

proved robot-survival interactions ranging from haptic tactile feedback to ease of

application in surgical environments.

2.1.2 The robot (daVinci Surgical System)

The daVinci Surgical System has been responsible for most of the robotic surgery

procedures that are being performed since the 2000’s. This system was first

used on human subjects in 1997 (used in coronary artery surgery as a proof-of-

concept operative principle) and has ultimately become the first FDA approved

robotic laparoscopic surgery system in 2000. The daVinci seems particularly

favoured in surgery of the pelvis (in urology and gynaecology): over all radical

prostatectomies performed in the USA between 2003 and 2010, the national robot-

assisted radical prostatectomy (RARP) adoption rate increased from 0.7% to 42%

(Murphy et al., 2006).
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2.1 Robotics surgery

Its supremacy in the market has being achieved due both to its unique position

in the market (being the only one available) and its multiple features that makes

it very versatile.

The history of the daVinci is well described in a paper by Camarillo et al. (2004).

Figure 2.4: The daVinci robot from Intuitive Surgical

The console The daVinci offers an ergonomic console and a seat from which

the surgeon can operate remotely from the patient; the console offers an in-line

eye-hand control of the instrument, together with a 3D stereoscopic image that

offers depth perception and zooming capabilities. Some new iterations offers also

a laser targeting function.

The computer translates the surgeon’s hand movements into the same movements

of the instruments, allowing the suppression of physiological micro-motions of the
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2.1 Robotics surgery

surgeon’s hand that will be not transmitted to the robot’s instruments.

Abbou et al. (2017) cites the fact that the integration of preoperative imagery

(computed tomographic and magnetic resonance imaging) and intra-operative

video to guide the surgeon could be an exiting development for this technology

and is interesting to consider the fact that my thesis is framed in a bigger plan

to discuss if such thing could actually be feasible.

The arm instruments The current iteration (as of 2017) of the daVinci, offers

a 4-arm system: to each arm an different instrument can be mounted. The

robotic arms are mounted on a cart: one of the arms holds the high-resolution

three-dimensional endoscope while on the others specialised instruments can be

mounted.

The ”EndoWrist” instrument, a small mechanical joint, allows for 7 Dof (degrees

of freedom), the same amount that the human wrist normally enjoys; instead,

current laparoscopic instrumentation (as of 2006) allows only 4 DoF. This allows

to complete complex micro-surgical tasks and grants easy access to usually “hard-

to-reach” areas of the body.

The instrument tips, or end-effectors, are designed from of traditional surgical

instruments, to allow surgeons to have a similar tool-tissue interaction as before;

they can be sterilized and interchanged during surgery. The instrument will so

fulfill various function like a stapler, scissor or haemostatic devices; they can be

mounted on the robot depending on the needs of the specific surgery. Other

instruments could be a laparoscopic insufflator and the camera control 3D image

system described in Abbou et al. (2017).

The surgeon receives some force sensation, from the instruments: This haptic

feedback is currently limited to interaction with rigid structures, such as tool-on-

tool collisions, and not from the interaction with soft tissues.
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2.2 Robot-assisted surgery in Urology

Figure 2.5: Console, controls and instruments of the daVinci robot

2.2 Robot-assisted surgery in Urology

The field of hurology is one of the firsts where robots have demonstrated to be

a viable option for performing surgery; in this field, MIS technique are still very

used, but the robotic ones have become standard procedures. Many techniques

has been developed, especially for cancer treatment of kidney and prostate.

When treating kidney cancer, if the tumor is not too large or problematic, it

would be possible to have partial nephectomy instead of total: this would allow

to spare the most part of the kidney but it is a very complex surgery which re-

quires precision and dexterity in an hard-to-reach position.

Robot-assisted partial nephrectomy (RAPN) is considered a feasible MIS alter-

native to open partial nephrectomy (OPN) for the surgical treatment of renal

tumors; Casale et al. (2019) suggests that RAPN results optimal outcomes in the

majority of individuals despite tumor complexity.

2.2.1 Robot-assisted partial neprectomy (RAPN)

Robotic-assisted partial nephrectomy was first described byGettman et al. (2004)

and has been perfected over time since them, increasing popularity. Today, the
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2.2 Robot-assisted surgery in Urology

RAPN is considered a valid alternative to open partial neprectomy (OPN), being

much less invasive, and having comparable results (Vittori (2013)).

Before the development of this new technique, the laparoscopic partial nephrec-

tomy (LPN) was the standard; as stated before, the robotic surgery have some

advantages when compared with the traditional techniques, such as enhanced

dexterity, greater precision and a 3D magnified view of the surgical field. Those

advantages will make RAPN a feasible option for the treatment of renal masses

(Long et al. (2012)).

When compared with OPN, the RAPN has lower blood loss and surgical com-

plication rates, with a generally shorter hospital stay; in comparison with LPN,

RAPN has with a shorter learning curve and shorter WIT (warm ischemic time),

with the advantages of traditional minimally invasive surgery (MIS) techniques

(Zhang et al. (2013)).

Having analyzed the reports in the literature, Casale et al. (2019) states that

based on their findings, RAPN should be considered as an effective alternative

and equally feasible to OPN and LPN when treating renal masses; it is associated

with low complication rates and conversion to open surgery rate ensuring optimal

oncological outcomes. Additionally, they would support the use of RAPN even

in patients with complex renal tumors. Porter and Blau (2020) reports similar

findings.

Quraishi et al. (2020) reports on the latest techniques for performing RAPN, giv-

ing an example of a procedure using a daVinci robot. RAPN allows the removal

and reconstruction of the kidney, performed through multiple little incisions, as

opposed to a single open incision in OPN which is much larger and painful. Also

LPN may be performed using smaller incisions but it can be technically challeng-

ing and more often converted to a total nephrectomy.

Many techniques are being developed to improve RAPN, for instance Porpiglia

et al. (2020) are studying a way to overcome ultrasonic guidance, using a 3D

model of the organ to use augmented reality during the surgery.
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2.3 Limitation to robotic surgery

2.3 Limitation to robotic surgery

Cost A contemporary daVinci robotic platform costs approximately €1.8 mil-

lion, with a yearly service charge of €145000 and instrument cost of approx-

imately €2300 per case. This remains beyond the financing capability of the

majority of public hospitals.

While robotic surgery costs remain high compared with open and MIS cases, there

is increasing evidence to suggest the long-term cost efficacy of robotic approaches

compared with traditional open operations (such as for radical prostatectomies);

this is largely as a result of lower overall complications, lower incontinence and

lower sexual dysfunction costs that robotic prostatectomy provides (Hughes et al.

(2016), Tandogdu et al. (2015), Bolenz et al. (2010)).

Learning curve The surgeon has to be retrained for the new procedure, even if

he is already experienced with that kind of operation performed without the use

of a robot, using a MIS traditional platform (Porpiglia et al. (2013)). It typically

takes 150–250 cases to achieve the learning curve for operative time (Wolanski

et al. (2012)); comparing learning curves and proficiency rates between procedures

and techniques can be problematic as utilizing open, MIS and robotic procedures

to achieve the same end result may not follow the same steps and therefore

are difficult to compare clinically and statistically. Additionally, most practising

surgeons become familiarized with MIS techniques before they go on to practice

robotic surgery, so that a true comparison of their learning curves could be biased.

Environmental and operational limitations Most current robotic plat-

forms needs sufficient theatre space that can accommodate the large dimensions

of the devices. In addition, the staff has to be trained specifically for the robot,

not just the surgeon but all the staff has to be familiar with the set-up of the

robot before surgery, being able to manage all the complexity associated with the

robot.
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2.4 The future of robotic surgery

Smaller and less complex devices could in the future address this kind of prob-

lems, allowing for an ease of transporting between different surgeon sites or for

an easier repairing procedure, resulting in an increase of the accessibility and the

general adoption (Ashrafian et al. (2017).

Feedback to the surgeon While the robot has advantages in terms of dex-

terity, the lack of a proper force feedback with the soft tissues is an important

issue: for this topic there is a lot of research currently ongoing but nothing yet

in the market (Ortmaier et al. (2007), Bahar et al. (2020), Okamura (2009)).

The last important issue, is related to the camera: during the surgery, the S.

Martino’s hospital surgeons have noticed that the view from the camera can be-

come quite unclear and the surgeon might lost track of the precise position of

the organ. For this reason, an application of augmented surgery could be very

useful: a computer generated image of the organ, result of a simulation, could be

super-imposed onto the real organ on the stream from the camera; the simulated

organ should deformate and be displaced in the same way of the real organ.

2.4 The future of robotic surgery

The future of robotic surgery depends different aspects; the first is for sure Tech-

nology: the continual research and its application will result in better robots,

using cutting edge technologies and know-how from different fields to improve

the surgical precision and the range of cases in which can be applied to have

better clinical outcomes.

If it will be possible to decrease the cost and increase the cost-efficiency for each

individuals, more institution will be able to afford a robot surgical system, in-

creasing the number of evidence to better understand its efficiency and effect.

The introduction of augmented surgery, visualizing the 3D model of the patient

on the robot’s console, could help the surgeon both before and during the surgery.
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2.4.1 Future technological improvements

Considering the future technological advancements, one of the most important

fields for the future of the robotic surgery is for sure the one regarding augmented

surgery. Many technologies focus on enhance the surgical decision, providing more

information to the surgeon to make him more aware of the current situation, us-

ing both visual and tactile perception.

Introducing more information would allow a surgeon to overcome operative en-

vironmental complexities; for example, can be used to overcome the difficulties

of operating on a beating heart, by generating a non-moving “phantom heart”

image so as to enable the surgeon to visualise a still heart for performing surgery.

Visualization Technology such as Dynamic View Expansion or Mosaicing have

already been introduced in MIS and can offer robotic platforms a wider field

of view than cameras (Mountney and Yang (2009), Stoyanov and Yang (2007),

Lerotic et al. (2008)). Multimodal visualisation technology is too being applied

in robotic procedures, such as augmented reality (overlaying of CT, MRI, ultra-

sound or other imaging) to guide the surgeon in decisions during the operation;

these techniques can be enhanced by improving depth perception, by implement-

ing see-through vision of an embedded virtual object while sustaining the vision

of standard operative anatomical landmarks( Lerotic et al. (2007)) or by incorpo-

rating in real time changes on the tissue surface. For this application, real-time

intra-operative ultrasound (USS) had added a technically simple yet diagnosti-

cally powerful imaging modality to robotic surgery and is used extensively for

robotic partial nephrectomy; it has potential in procedures where it can help dif-

ferentiate tissues (Hekman et al. (2018), Mohareri et al. (2015)).

Tissue imaging with photodynamic capture and enhanced microscopy ranging

from Narrow Band Imaging, Fluorescence Lifetime Imaging and other techniques,

will offer increased real-time visual histological data that can identify tumour cells

and margins (Galletly et al. (2008).

Robotic cameras quantify tissue autofluorescence after emitting radiation, this

16



2.5 Augmented surgery

allow to highlight any microscopic tissue of interest. The combination of this,

enhanced diagnostic computation, visual processing tools and machine-learning

algorithms (Esteva et al. (2017)) will allow the precise recognition of certain tis-

sues that can be removed with high precision from the robot.

Porpiglia et al. (2020) are studying a way to overcome ultrasonic guidance, using

a 3D model of the organ to use augmented reality during the surgery.

Tactile feedback As highlighted before, the lack of tactile feedback is a strong

limitation because the sense of touch can be of critical importance in differentiat-

ing pathology and making surgical decisions while it is being performed. Increased

tactility will offer a new level of tissue perception for robotic surgeons that could

be translated into increased precision and safety.

The study of the neurophysiology and trasduction of human tactile perception is

allowing the scientist to build wearable haptic systems to offer tactile enhance-

ment: this will allow even smaller operative utensils with higher DoF joint ca-

pacity and more advanced kinematics (yun Yao et al. (2005), Pacchierotti et al.

(2017), Hammond et al. (2013)).

Still, if the tactile feedback is not perfect, could be more harmful than useful

(Overtoom et al. (2019)).

2.5 Augmented surgery

The augmented reality (AR), applied to the robotic surgery, could be a game

changer in terms of information to which the surgeon can access while performing

the surgery, if necessary.

Reis et al. (2021) have performed a review of the literature regarding the use of

augmented surgery and has pointed out that, while actual technologies may have

some limitation in term of accuracy, the future is very promising and there is a

lot of interest from scientist and researchers to improve them or create new ones.

The augmented reality, or mixed reality (MR), superimposes new objects onto
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the view from a camera: to perform such task, many different aspects have to be

considered. The visual tracker is a crucial component: it allow the virtual object

to mantain the right pose and orientation while the visual from the camera is

changing, or to change in the right position if the camera is still.

In robotic surgery, the virtual object might be a 3D model of an organ, for instance

a kidney, that has to follow the pose and orientation of the real one while the

camera of the robot remains still. The tracker will use visual features or other

information to keep continuously track of the real object, a task that could be

challenging.

The information from the camera and the tracker can then be fused together to

generate a unique video stream: in the case of the daVinci robot, the destination

of the video would be the integrated visor that allows for stereoscopic video

playback.

Figure 2.6: Augmented surgery application with a kidney (Kong et al. (2016))

2.5.1 Augmented reality in hurology

It has been demonstrated that the use of augmented reality has a lot of benefits

both while educating and while training.
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2.5 Augmented surgery

While educating, the students could interact with a simulation, manipulate and

interact with it, especially in the 3D perception of anatomy of the organs.

For the training, the main goal are surgical simulators: a way for the future

surgeon to learn and improve a surgical procedure in a safe and controlled en-

vironment. The surgeon will interact with the control instruments and see the

simulated result on the visor.

Hung et al. (2015) developed a simulation platform for RAPN that could use

both augmented and virtual reality, for a partial or fully simulated environment,

which resulted very effective.

At surgery time, MR could provide significant support to the surgeon: both dur-

ing surgical planning, using information from scan (such as CT, MRI or PET)

then during the actual surgery. It would be possible to see the actual organ in

3D, not just in 2D like in standard monitors.

The virtual organ used in the MR environment would be the one of the pa-

tient that will undergo surgery: we can define it an application of personalized

medicine. The 3D reconstruction of organs from the patient’s scan have demon-

strated very reliable and useful (more on this in Section 3.2.

The main issue lies on the fact that organs are not fixed and rigid objects, they

can change in shape and position, especially when under surgery. For the case

of the kidney, in addition, in a close-up view the organ look very homogeneous

with very few distinguishable visual features, especially with a restricted view;

deformable models that are able to take internal organ deformation are currently

under development. Artificial markers might be applied on its surface and be

used for estimating pose and orientation; in addition there is ongoing research

about the possibility of applying inertial sensors on the organ.
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Chapter 3

Modeling the deformation

behavior of soft tissues

The modeling of soft tissue has become a relevant topic of research, due to

both Minimally Invasive Surgery (MIS) insurgence and surgical training simu-

lators. Famaey and Sloten (2008) provides an overview of different models of the

continuum-mechanic that keeps in account different properties of the soft tissues.

Those kind of models are directly based on the laws of continuum mechanics; they

provide high fidelity and are less expensive that other kind of models (like the

mass-spring one), using finite element methods and boundary element methods

(described in Meier et al. (2005)).

3.1 Material’s properties

The models that allows the Computation of realistic surgical tool–tissue inter-

action forces and organ deformation through the continuum mechanics approach

first requires understanding of physical laws governing the behaviour of soft tis-

sues. From Fung (1993), we have a base to define various properties of the soft

tissues that can be modeled.

A material is called hyper-elastic when it assumes its original form after removal

of the applied forces; a second condition is that the acquired deformation or stress
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3.1 Material’s properties

pattern is independent of the followed path to obtain this deformation or stress

pattern (Bonet and Wood (2008)). Describing the Hyper-elasticity (for soft tis-

sues, Gasser et al. (2005)) via the strain energy density function (SEDF), is a

common way to describe the material behavior as a relationship between stress

and strain (Hibbeler (2005)).

A way to simplify the model, introducing some limitations, is to consider the elas-

ticity as linear, imposing a linear relationship between stress and strain. Misra

et al. (2007) noted that linear models are less realistic, also because soft tissue

behavior can be considered linear only for small displacement and deformation,

which is not the case for most surgical application; also, the linear model is not

invariant with respect to rotations.

Cotin et al. (1996) suggests that the linear elasticity can be a reasonable approx-

imation when computing soft-tissues deformation.

To describe the elasticity more accurately we have to use nonlinear models; Picin-

bono et al. (2001) analyzes the St. Venant–Kirchhoff elasticity and found it real-

istic.

According to Horgan and Saccomandi (2003), the nonlinear material behaviour

can be described using power law models: for instance, one of the most important

models for soft tissues is the Fung model (Fung (1967)): starting from that, many

other models has been developed.

A viscoelastic material, will not immediately resume its original form after re-

moval of the applied forces, differently from an hyper-elastic material, because it

is history-dependent and not path-dependent. Besides a nonlinear stress-strain

relationship, Fung (1993) also identified a hysteresis loop in cyclic loading and

unloading, stress relaxation at constant strain and preconditioning in repeated

cycles.

An other way to simplify the modeling of elasticity, we can introduce the con-

cept of pseudo-elasticity: we treat a preconditioned material as one hyper-elastic

material in loading and another elastic material in unloading (Vito and Dixon
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(2003), Holzapfel and Weizsäcker (1998)).

In addition, different Soft tissues can be internally composed by different layer

with different components, models should be able to take them separately into

account and compute the total tissue strain energy as a sum of the components

of each layer.

To be suitable for a definitive surgical simulation, a model should be able to

incorporate the tissues damages during deformation, micro-structural changes

cause a reduction in the mechanical strength (Natali et al. (2005))), changing

the hysteresis and other mechanical properties over time. Models such as Fung’s

pseudo-elastic model are not suitable because they describe the behaviour of tis-

sue in a preconditioned state with a constant hysteresis.

3.1.1 Constitutive Models

BEM Kim et al. (2007) introduces a method multi-resolution model technique

that allows physically-based real time simulation. In particular, this method

allows to include deformation as response of intervention with surgical instru-

ments. This technique uses a coarse model to represent the whole organ but it

is enhanced locally using a mesh subdivision and smoothing algorithm: compute

the global deformation would be numerically and computationally expensive, and

it is not feasible in the case of a surgical simulation because it requires real-time

performances. The tool-tissue interaction is restricted just in the neighborhood

of the contact point on the organ’s surface. An high-resolution model is required

for this region to obtain an accurate simulation, that kind of resolution is not

needed for the rest of the organ.

The technique used for the global deformation (the rest of the organ) is based on

a Boundary Element Technique (James and Pai (2003)), a discretization of the

integral equations of motion with respect to the model surface. Using BEM, the

surface of the object is divided into patches and the equations can be solved effi-

ciently, using acceleration techniques such as Fast Multi-pole Method (Greengard
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and Rokhlin (1997)); this also allows real-time interaction in surgical simulation.

For the Local Deformation, instead, they introduced a local subdivision algorithm

and a relative smoothing one, starting from a computer graphic algorithm (Vla-

chos et al. (2001) ) that divides the surface in triangles, iteratively smaller, than

deformed depending by the applied forces and then interpolated and smoothed

to obtain the new deformed surface.

According to Kim et al. (2007) this technique has advantages over the FEM tech-

nique (for the modelling and analysis of elasto-static problems (Brebbia et al.

(1984)), that i will describe later, but the authors also states that the FEM has

advantages regarding the modelling of non-homogeneous and non-linear materials

and that their technique could be possibly used with FEM.

The BE and FE methods are constitutive models, they allow to simulate more

physically accurate deformations, incorporating real physical material properties.

The main difference between them is that the BEM computes the deformation

over a surface, the FEM instead computes it over a volume.

FEM From Misra et al. (2008), Chanthasopeephan et al. (2007) and Chantha-

sopeephan et al. (2004) we have a good description of what FEM is and how can

be used to model soft tissues.

The Finite Element Method is a numerical technique that allows to solve, up

to a certain error, field equations; in the soft tissue deformation it solves the

equations of continuum mechanics. It origins in the 40’s (FEM historical review,

Pelosi (2007)) and it is first used in the current form in elasticity and vibration

analysis (Cook et al. (2007)).

A FE method divide the volume into number of sub-regions called elements,

much simpler that the original one, where the adjacent elements are connected

via nodes. The result of the simulation will output the nodes displacement, this

will characterize the global deformation. Each element has its characteristic elas-

tic behavior, depending by the element’s material and geometric properties; we

23



3.1 Material’s properties

can than use interpolation functions to approximate the behavior around a cer-

tain node.

The soft tissue deformation is particularly challenging because the biological tis-

Figure 3.1: Representation of a FEM force field in SOFA

sues are not homogeneous and anisotropic and have nonlinear constitutive laws;

as of today, most FE models are optimized for linear elastic problems, allowing a

small variation into the material properties, but there are many research ongoing

in this field.

The FEM simulation can be very precise, but adding more and more elements to

it could make it computationally expensive: a trade-off must be made, especially

if the goal is to use that model during a surgery in real-time.

It is also challenging to obtain the material parameters of an organ, together with

its precise shape.

The Linear elastic FE models are so the most used to model tissue deformations,

they are computationally efficient and easier to setup, considering isotropic and

homogeneous materials. To be able to use them in real time (both linear and
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nonlinear elastic models), some techniques can be used to simplify the computa-

tion (Bro-Nielsen (1998)).

Cotin et al. (1999) have used data from a CT scan to generate a 3D anatomical

model of the organ and then used this method to simulate its deformation. This

method is effective for small strains(1–2%), but Kerdok et al. (2003) noted the

same cannot be said for large strains. Other examples can be found in DiMaio

and Salcudean (2005), Picinbono et al. (2000), Wu and Heng (2005), while a

linear visco-elastic model can be found in Samur et al. (2007).

The hyper-elastic FE models are a better way to simulate the large deforma-

tion that will occur during surgical procedures; it is necessary, as stated before,

to identify an appropriate strain energy function that allows to find the consti-

tutive stress-strain relationship. Still, the characterization of nonlinear behavior

of real tissues is a complex task, but we can find some successful example in Liu

et al. (2004) and Wu et al. (2001).

An even more realistic representation is a Visco-Hyperelastic Finite Element

Models, that combines both properties, Puso and Weiss (1998) were the first

to implement this kind of model for soft tissues.

Some methods to approximate the FE models exists, for instance the Active Con-

tour models, technique that comes from computer graphics (Kass et al. (1988)).

3.1.2 Heuristic (or particle) based models

A different kind of modeling is the heuristic-based one: those models represent

the geometry as deformable splines, for instance the mass-spring-damper model,

linked volumes or the mass-tensor model. While their physical realism is limited,

they are frequently used in cases when the simulation has limited time constraints,

due to their computational simplicity.
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3.1 Material’s properties

Figure 3.2: Representation of a MSM in SOFA

MSM Firstly introduced by Hrennikoff (1941), the mass-spring model is an ex-

ample of linear model, Cotin et al. (1999) shows a general analysis of the method

and a possible implementation in soft tissues simulation in a surgery simula-

tion environment, including a patient-based 3D organ reconstruction, procedure

described in Montagnat and Delingette (1997). This approach includes some pre-

simulation computations performed using FEM.

In general, the mass-spring model consists in a certain number of particles (com-

posing the mesh of the object) connected by a network of springs (and dampener,

in the case of the mass-spring-dampener); each particle movement will influence

the position of the other one connected to it via a spring.

Villard et al. (2008) proposes a new framework, based on mass-spring model used

in combination with the tensional integrity method. This allows to have a de-

formation on the organ that is more consistent that the sole mass-spring model,

especially in retaining the shape of the object under large forces without degra-

dation, allowing it to handle larger deformations.

Xu et al. (2018) proposes a new way that allows to simulate with this method
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not only the elastic properties but also viscoelasticity and non-elasticity.

3.1.3 Hybrid approaches

We also have some hybrid approaches, that uses different methods to simulate

different aspects of the material or to improve the computational time of the

simulation.

Hu and Desai (2004) describes a hybrid visco-elastic model, matching up their

experimental results with a pig liver. Their model uses linear and quadratic ex-

pressions to relate the measured force-displacement values, which are valid for

both small strains (up to 16% compression) and large strains (around 16-50%

compression).

Zhu et al. (2008) proposes and approach based on BEM, for precise global defor-

mation and the use of meshless shape matching method to achieve low latency;

this method is addressed to interactive models, that should give results in real

time so speed an low latency are paramount problems. The meshless shape match-

ing is an iterative approach that can be very fast, used to simulate the vibration

behavior of the tissue. A state machine will switch between the two methods,

analyzing the force on the object; the first method will be used to compute the

deformation, responding to external forces, when those are removed from the

surface, the second method will be used to restore the original shape.

3.1.4 Extract material paramteres

For some models, it is possible to derive a formula to directly calculate the pa-

rameters. For instance, Gelder (1998) was able to compute the parameters for

a Mass-Spring model in a static state, where the materials are non-uniform but

isotropic.

An isotropic material is a material whose local deformation in response to force

is independent of the direction in which the force is applied. However, in a non-

uniform material the response varies with the position where the force is applied.
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For 3D tetrahedral meshes, some parameters can be directly computed for for-

mulas, however, often it is not possible to do such calculations for models that

rely on complex constitutive material laws as in the FEM.

Material parameters based on bio-mechanical soft tissue behaviour

The major advantage of using a differential/integral equation-based technique

for deformation modelling is the ability to use a material model. When using a

model, is possible to assume linear isotropic elasticity: this implies that only two

independent parameters, Young’s modulus and Poisson’s ratio, are necessary to

simulate the response of soft tissues.

The Young’s modulus (or elastic modulus) is a mechanical property that mea-

sures the tensile stiffness of a solid material (model the stress-strain relationship

of a material) while the Poisson’s ratio is a measure of the tendency of a mate-

rial to get thinner in other two directions when being stretched in one direction

(measuring the compressibility of the material).

Those kind of parameters can be measured on tissues, both ex-vivo or in-vivo,

using devices such as such as TeMPest, Ottensmeyer and Salisbury (2001). To

measure those parameters, some known forces are applied to the tissue and the

displacement of some known point in the volume is measured.

Most of the techniques developed in the past are ex-vivo, in Fung (1993) is pos-

sible to find one of the first comprehensive study on various human tissues.

There are also some examples where the mechanical properties of human or ani-

mal tissues are directly extracted in-vivo (Tay et al. (2002), Luboz et al. (2012),

Samur et al. (2007), Hollenstein et al. (2009), Schwenninger et al. (2011), DiMaio

and Salcudean (2002)), some of them also contains a test comparing the real tis-

sues with the simulated one using the obtained parameters.

For the kidney and the blood vessels, study reporting the parameters that can be

used in a simulation can be found in Karimi and Shojaei (2017) for the kidney

and in Li (2018) for the blood vessels.
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3.2 Physical models

3.2.1 Obtain physical model of an organ from a patient

scan

In 1994, a full set of 3D human anatomies was published (Ackerman (1999)); from

that moment, various improvement has been done in the field of 3D reconstruction

from traditional medical imaging techniques.

An important step in surgery simulation would be to become able to generate a

personalized 3D model of a patient organ, from a medical scan. Various example

and methods can be found in Dawant et al. (2001), Pan and Dawant (2001),

Andrew (2000), Lorensen and Cline (1987), Montagnat and Delingette (1997).

Cotin et al. (1999) is one of the earliest work and analyzes all the step that leads

to the simulation, from the CT scan to the generation of the geometric modeling

and then obtain the physical model from biomechanical experiments, ending up

with the final model that can be used for the simulation.

A comprehensive and extended example of a pipeline for this kind of procedure is

well described in Crouch et al. (2007), Chacko and Sawant (2011) and Lee et al.

(2018); this would allow to automate the setup of a FEM simulation, to be than

used for a surgical simulation. The input data in this case comes from a patient’s

CT scan.

3D reconstructed organs Clements et al. (2011) used the method proposed

by Dawant et al. (2001) on multiple patients and founds that the obtained error

was statistically acceptable and usable in a real scenario.

About the accuracy and the usefulness in general of those geometrical models,

many studies have reported that the surgeons have found them very useful in

the surgery preparation (Favorito (2018), Schiavina et al. (2019), Yaxley et al.

(2016), Wake et al. (2017), Shirk et al. (2019)) and have resulted very close to the

real organs (Michiels et al. (2019),Porpiglia et al. (2018), Porpiglia et al. (2019)).
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3.2.2 3D Model building pipeline

In this section i will present the pipeline that i used to build the mesh model that

can be imported into the SOFA simulation as input for the FEM method.

The data about the shape of the organ comes from a CT scan of the patient;

Figure 3.3: 3D model building pipeline

the CT scan produces a dataset of 2D sliced radiological images. The resultant

DICOM database has been transformed into a surface 3D model (in the ”.stl” for-

mat) using the software Materialise Mimics inPrint by a specialized technician.

The scan has been performed by using a contrast agent: this allow to segment

independently different anatomical parts and generate a model composed by mul-

tiple parts. In this case, three parts are segmented: the kidney and the blood

vessels, the kidney and arteries.

A surface 3D model is not enough to simulate the organ: a volumetric mesh is

necessary. I made some initial modification to the 3D model using Meshmixer

from Autodesk, removing some appendices that were not useful for my purposes,

then re-sampled the model mesh using MeshLab, reducing it resolution (being

the model way more accurate than necessary), to make the simulation deal with

a less defined model and reducing its computational complexity. The volumetric

mesh was then generated using QTetraMesher (suggested in the SOFA website),

and the mesh is modified again using gmsh for some final polishing.

The original model of the scan included the organ, a kidney, plus all the blood

vessels: the veins, including a small portion of the Inferior vena cava and the

arteries, including a portion of the abdominal aorta. The two big vessels, inferior
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3.2 Physical models

Vena Cava and Aorta, have been removed; then, the kidney, the arteries and the

veins have been separated into three different 3D models.

In the following figures, is possible to see the 3D model of the kidney in addition

to the blood vessels and then the separated veins and arteries.

Figure 3.4: 3D model of the kidney and blood vessels
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3.2 Physical models

Figure 3.5: 3D model of the veins

Figure 3.6: 3D model of the arteries
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Chapter 4

Simulation and simulation

platform

4.1 Simulation platform

The simulation platform that will be used for my thesis called SOFA (Simulation

Open Framework Architecture): this platform has been introduced and described

in 2007 (Allard et al., 2007), with the goal of performing a multi-model represen-

tation: the final Behavior model is composed by sub-models connected together

with a sub-mechanism called mapping : each sub-model is responsible of repre-

senting a particular component (for instance collision detection, visualization,

haptic). This decomposition into a set of basic components allows for a clear

separation between the different aspects of the simulation and for a reducing of

the DoF of each models, making them more easier to compute.

This separation in components is crucial also when considering different objects

in the same simulation: each component of each object is computed separately

and unless they come in contact and perform in collision, they remain indepen-

dent.

The simulation in SOFA is graph-based: the scene has a base node and from that

it is expanded in child nodes. From the root node, for instance, we can grow a

new node that is representing one of the objects that we want to simulate; from

33



4.1 Simulation platform

that, new child nodes will represent the various models (visual, collision or me-

chanical model) of the object.

The article Faure et al. (2012) contains a more in-depth analysis of the SOFA

framework; it also contain some example of implementations, for instance an ex-

ample of an human organ (the heart) and its behavior or a knee-joint mechanics.

Comas et al. (2008) points out how SOFA can be efficient in computing nonlinear

FEM in the soft-tissues modelling, especially when using the GPU acceleration

module.

The geometrical model that can be obtained from the patient’s scan, for instance,

is in form of a mesh, a collection of vertices connected via edges, forming a graph.

The faces are usually defined regular shapes, triangles, quadrilaterals or exagons

for surfaces and tetrahedrons for volumes; those shapes allows a smooth repre-

sentation of the deformations (Delingette (1999), Montagnat et al. (2001)).

Figure 4.1: User interface of SOFA
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4.2 Components in SOFA

4.2.1 Models in SOFA

Mechanical Model This model represents the internal mechanical behavior

of the object, can be computed using various techniques, from FEM to a mass-

spring type model. The Mechanical (or Physical) model has usually a tetrahedral

topology (set using the component TethrahedronSetTopologyContainer).

The state vector associated to the model is the MechanicalState: this will contain

the and the velocity, acceleration and force of each node of the mesh composing

the simulated body (the total Degrees of Freedom, DoF, of the model).

Figure 4.2: FEM model with a tethrahedral shape

As for the DoF of the model, two main templates are present:

• Vec3d: the object has 3 DoF for each node and is used to simulate the

mechanics of a body, [x, y, z];
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4.2 Components in SOFA

• Rigid: the object has 7 DoF per node and is used to simulate rigid bodies,

[x, y, z, qx, qy, qz, qw].

Collision Model This model is necessary to define the behavior of an object

colliding with another one; is important to choose the proper level of precision

in the contact handling because the computation process could be quite time ex-

pensive. Its consists in a bounding box (or a set of boxes with different sizes, in

case of a complex shape) around the physical object; when two bounding boxes

of different objects will intersects a collision will happen.

SOFA offers different primitive shapes (for instance sphere or cube) that can be

used as simple collision model (even more combined), in addition is possible to

use a model from the memory.

Figure 4.3: Collision model and its related bounding boxes

Visual Model This model allows to attach a visual model to the simulated

object, useful for the user to properly understand what is going on during the
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4.3 Other components

simulation; it usually has a triangular mesh with high resolution, to be easily

mapped with the Mechanical tetrahedral one.

4.3 Other components

Mapping Is a crucial component of SOFA: it allows to link the models and

make them coherent and consistent in changes (usually the mechanical model is

the one that enforce the change to the other ones). This allows to use different

kind of mesh topology between the various models. For instance, we may use a

more coarse mesh in the mechanical model and a finer one in the visual model:

we will obtain a good looking simulation that is not too much heavy in the com-

putation of the mechanical behavior, limiting the amount of Degrees of Freedom

of the mechanical model.

The mapping defines a function that maps kinematically the position of the me-

chanical model (the parent) to the collision model or the visual model (the child).

The coordinates could be barycentric (for deformable bodies) or local (for rigid

bodies); once the correspondence is computed, vectors (for instance forces) could

be projected from one representation to another. Is possible to propagate posi-

tions, velocities, displacements and acceleration both top-down, from the parent

node to the child, and bottom-up, from the child to the parent by modifying a

parameter.

4.4 Simulation implementations examples

In this section i will present some examples of simulation regarding human organs

and the soft tissues they are composed from which i took some inspiration while

building my simulation. L. da Frota Moreira et al. (2013) compares the results

from a simulation using SOFA with the experimental ones from an actual needle

insertion into an human prostate, resulting accurate and with a low computa-
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4.4 Simulation implementations examples

Figure 4.4: Mapping points (in yellow)

tional time, making it suitable even for a real-time surgical simulation.

In Marchal et al. (2006) we can find one of the first example of simulation of this

kind of procedure and gives an example of the simulation setup pipeline and the

kind of results to expect in terms of displacement.

Horn et al. (2016) describes the steps to simulate an organ starting from the CT

scan of a patient.

Jing et al. (2021) have realized a simulation of a kidney, using SOFA, with the

scope of build an augmented reality application studying how a kidney deforms

when forces are applied to it.
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4.5 Anatomy of a basic simulation

4.5 Anatomy of a basic simulation

The Figure 4.5 describes an example of a simulation graph; the four components

are necessary component for SOFA in order to initialize the simulation. The

simulation scene is composed of nodes, starting from the node root that is the

parent node and is the first to initialize.

Root AnimationLoop

MeshLoader

Solvers EulerImplicitSolver

CGLinearSolver

Contact DefaultContactManager

MinProximityIntersection

BruteforceDetection

DefaultPipeline

Vein [...]

Artery [...]

Figure 4.5: Example of a graph defining the scene of a basic simulation

The AnimationLoop node is responsible to order all the steps of the simulation

and call the solvers when necessary; as first, it calls the the CollisionDetector and

computes the collision, if present, then computes the physic of the system, taking

in account the defined constraints, calls the solver to solve the resulting linear

system and updates the system with the new computed values from the solvers.

Loading the mesh file The MeshLoader node (MeshGmshLoader in this

case) is necessary to load the .msh that has been generated from the patient’s
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4.5 Anatomy of a basic simulation

scan of the organ; the loaded model can then be used as a mechanical, collision

or visual model; if more than one mesh is necessary to add one loader for each

desired mesh.

The physical Solvers The Solver node contains the desired solvers that are

used to compute the temporal evolution of the system using small time steps. The

EulerImplicitSolver is an integration scheme and uses methods called ”implicit”:

this means that the new time step is computed based on information we already

know about it, they’re slower than the ”explicit” ones (that computes the new

step based on the current one, SOFA supports those too) but way more stable.

This first solver describes how the linear matrix system is built, now it has to

be solved: the CGLinearSolver is an iterative solver, the result is so computed

through multiple computations; this method is preferred in bigger system at the

direct solver, which computes the result directly. The result will be stored as the

status of a MechanicalModel.

Contact Node The Contact node includes the sub-nodes that have to detect

when a collision between two object happens and have to compute the resultant

forces. Depending on the component that are used, the collision can be handled in

different ways; DefaultP ipeline defines how the pipeline of the collision handling

is structured: reset of the collision, collision detection and collision response. The

reset of the collision clears the data computed from the previous time step.

The collision detection is a delicate state: each CollisionModel is surrounded by

a bounding box: if two or more bounding boxes intersects that means that a

collision is happening. Here a proximity method is used, the node MinProximi-

tyIntersection detects when two nodes are getting close, before than the collision

actually happens. In parallel to that, the node BruteforceDetection checks if

some bounding boxes is actually colliding with another (Broad phase). After this,

the DefaultContactManager (Narrow phase) will detect the model that are in

collision and will compute the contact intersection and resulting forces using the

penalty method.
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4.5 Anatomy of a basic simulation

Root [...]

Vein MechanicalObject

TetrahedronFEMForceField

TetrahedronSetTopologyContainer

TetrahedronSetGeometryAlgorithms

UniformMass

VisualModel Mapping

Solvers [...]

CollisionModel Mapping

Artery [...]

Figure 4.6: Example of an object in a simulation
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4.5 Anatomy of a basic simulation

Simulating object in SOFA The V ein node represents the first object in the

scene (we can see in Figure 4.6 its content): it has associated a MechanicalObject,

a V isualModel and a CollisionModel, the models described in the Section 4.2.1.

Mechanical Object and topologies The MechanicalObject in this case is

a tetrahedrical model so it is necessary to use the components TethraedronSet-

TopologyContainer and TetrahedronSetGeometryAlgorithms to set the topology

as tetrahedrical and the relative geometric algorithm that will be used; this last

component will include all geometrical function and visualization options for each

specific topological element.

Setup FEM simulation A crucial component for the simulation of the inter-

nal mechanics of an object is TetrahedronFEMForceF ield: this component is

linked with the topology and the mechanical state of the object. The parameter

of this component are the Poisson’s ratio and the Young Modulus, described in

the Section 3.1.4: those are the material parameters, by using a FEM model

(Section 3.1.1), which is a material model, is possible to simulate the material

just by defining those two parameters. This component will compute at each

time instant the force applied to each point on the mesh, depending on the pa-

rameters each point will affect the others and their position, velocity and force.

The node UniformMass us used to assign a mass to the FEM model and it will

be used when computing forces; it requires a MechanicalObject to store the DoF

associated to the nodes, together with the Solvers.

The node Solver contains the same solvers as before, this time are associated to

the specific object and its DoF and it is not global; they’re required to compute

how the physics of the object changes over time. In the Figure 4.7 we have a

more focused view inside the CollisionModel and the V isualModel of the V ein

node; both models are mapped to the MechanicalObject that is part of V ein to

keep the model consistent with one another.
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4.5 Anatomy of a basic simulation

Root [...]

Vein MechanicalObject

CollisionModel Mapping

MechanicalOject

SphereCollisionModel

VisualModel Mapping

OglModelArtery [...]

Figure 4.7: Example of an object in a simulation (focus on visual and collision
model)

Visual Model As described in Section 4.2.1, the V isualModel is the node that

will be used for the visual representation of the simulation, to allow the user to

better understand what is going on just by looking at it. The OglModel will use a

mesh that has to be previously loaded with a MeshLoader and has various option

for the visualization such as the definition of the color of the model, the texture

or a shader. The mapping between this and the Mechanical model, will make the

Visual model changing shape whenever the Mechanical model is deformed.

Collision model The CollisionModel node defines how the object will react

during a collision: the MechanicalObject is an additional mechanical model.

This model will be used to store the kind of forces that are generated during a

collision; being mapped to the primary Mechanical model of the object, at each

time step the Animation manager will take the forces generated during the colli-

sion and will apply them to that model. It is then necessary to define which kind

of shape the Collision Model actually has: in this case, the collision is computed

on a volume that is composed of multiple spheres (SphereCollisionModel), as

many spheres as the point in the mesh, each one of a fixed size.

43



4.5 Anatomy of a basic simulation

At the same level of the V ein node we can find the Artery node: this node could

represent another object, structured in the same way of the V ein one, but could

also be completely different, using a different force simulation than FEM, using

another collision type or other internal algorithms, making SOFA very versatile.
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Chapter 5

Setting up the Simulation

While going under surgery, the organ itself, the connected blood vessel and neigh-

bor organs are subjected to various motion and forces. Among all the possibilities,

is necessary to choose the behavior that most suits our necessities in term of gen-

erating data that can be then used to train a model.

The first approach that i took was to consider the organ itself as deformable (us-

ing FEM) and to apply it some forces using a sphere, which should simulate the

tip of a daVinci robot instrument. In this way, the simulation would compute

the deformation on the organ itself (a kidney) when being manipulated. This

approach has presented some limitation: as first, the control of the forces applied

to the sphere introduces a lot of complexity, solved by considering forces directed

on just one of the three 3D axes; this has made the control of the forces applied

to the ball much easier and not completely unrealistic, considering the fact that

a force of that kind could be applied by the robot, during a surgery tho that kind

of forces are unlikely to be generated.

An other limitation, that has raised after analyzing the behavior of the simulation

is that, like in the reality, the simulated organ wouldn’t deformate that much,

and the study of a local deformation wouldn’t be much relevant when considering

the pose of the entire organ.

After some discussion with Professor Paolo Traverso of the S. Martino hospital

in Genoa, we decided to radically change the scope of the simulation; the goal of
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5.1 Simulating the blood vessels’ deformation

the simulation has than changed from the computation of the local deformation

of the kidney to the computation of the local deformation of the blood vessels

that are connected to the kidney, while considering this last one as a rigid body

for an easier control of position and rotation; the kidney considered as rigid with

respect to arteries and veins because it is much more stiff than the blood vessels.

For this reason, this kind of approximation the result of the simulation should

remain mostly close to the real behavior of the deformation.

5.1 Simulating the blood vessels’ deformation

In this simulation three main object are present: V ein, Artery and Kidney. The

main nodes necessary to the simulation are described in the Section 4.5 (Anatomy

of a basic simulation).

For the V ein node, is possible to reference the Figure 4.6: some nodes has been

added, as visible in Figure 5.1. The MechanicalObject of this node is a mesh

that have been loaded using MeshLoader. The mesh itself comes from the pro-

cedure described in Section 3.2.2: in this case, the mesh will be of the veins alone

because all of the three components (the kidney, the veins and the arteries) will

be simulated separately because the material parameters are different and so the

reaction when subjected to forces will be different.

As described in the Section 4.5, SOFA allow for the use of a material model, using

the Finite Element technique (FEM, Section 3.1.1). To perform such simulation,

is necessary to know the material parameters (Young Modulus and Poisson’s Ra-

tio, Section 3.1.4) of the soft tissue: I’ve researched the literature and found

suitable parameters in Li (2018).

Having setup the simulation using a geometrical model of the human veins and

the FEM simulation with the latter’s soft-tissues parameters we should obtain as

result a realistic deformation of the object while being subjected to forces.

The nodes necessary to setup the FEM simulation (TetrahedronFEMForceField,

TetrahedronSetTopologyContainer, TetrahedronSetGeometryAlgorithms) have been
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5.1 Simulating the blood vessels’ deformation

Root [...]

AttachConstraints [...]

Vein [...]

FixedConstraints

Monitor [...]

Artery [...]

kidney MechanicalModel RigidMapping

Position

UniformMass

VisualModel RigidMapping

Solvers [...]

Shape MechanicalObject

PositionControl TransformEngine

Solvers [...]

SofaController

Figure 5.1: Graph of the blood vessels’ simulation
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5.1 Simulating the blood vessels’ deformation

Figure 5.2: Blood vessel’s simulation

described in Section 4.5, the same for the Collision and Visual node.

The node FixedConstraint is necessary to apply a constraint to some points of

the mesh of the object: their position will be fixed as the initial one and their

velocity will remain constant and equal to zero during the simulation. The ap-

plication of those constraints is necessary because some point of the mesh has to

remain still: in the real kidney, the veins are attached to the inferior Vena Cava

which doesn’t deform much during surgery. For this reason, I considered the point

that would have been attached to the larger blood vessel as fixed. The points are

visible in Figure 5.4, the pink points between the vessels and the world.

The Monitor node allow to keep track of the position, velocity and force of

some points of the mesh: this will be useful at a future time when analyzing the

behavior of the simulation. SOFA allows to draw on the simulation window the

trajectory of the points that are being monitored: in this way it can be evaluated
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5.1 Simulating the blood vessels’ deformation

Figure 5.3: The poins that are being monitored, in helical shape

while the simulation is running. The points have been chosen in an ”helical”

shape, along the lenght of the vessel, from the Vena Cava to the points attached

to the kidney. The state of the points will be logged on a file that can be used

later (described in section 6.1, ”The software architecture”).

The Artery node is built in a very similar way of the V ein one; it will too being

simulated using a FEM technique (the parameters are found in Li (2018) too). It

has similar constraints and the points to monitor are again chosen in a ”helical”

shape.

The Kidney node is built differently: in this case the MechanicalModel repre-

sented by a simple rigid particle; its position depends by the TransformEngine

that will be described later. This is a simplification but in this case we are not

particularly interested to the deformation of the kidney itself (which is much rigid

with respect to the veins and artery).

The Shape node is used to give the rigid point an actual shape, that itself will

be rigid and follow the point pose and orientation; the MechanicalOject inside

Shape will be a mesh representing the entire kidney but being rigid it Will not

deform. This Mechanical model is also necessary to give the Vein and Artery

object some points to be attached to.
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5.1 Simulating the blood vessels’ deformation

The SofaController node is associated to a Python script: it will contain the

server to which the ExternalScript will communicate to, being so able to give

commands. The V isualModel node uses the same mesh of the Shape one, both

will be mapped to the pose and orientation of the main MechanicalModel.

Two additional main nodes are present: AttachConstraints and PositionControl.

The first, is necessary to attach the models: some points have been handpicked

from the mesh of the vein and arteries to be attached to some other ones in the

kidney mesh. This will cause the point to be permanently attached and as result

the bodies will be linked during the simulation. The points are visible in Figure

5.4, the pink points between the vessels and the kidney.

Figure 5.4: Applied constraints (in pink)

The second node allows for the position and rotation control of the TransformEngine:

its position and rotation will then be used by the kidney’s mechanical model as

input for his pose and orientation. By giving inputs to the engine, it will be

possible to change position and rotation as wanted and those changes will be
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5.1 Simulating the blood vessels’ deformation

reflected in the entire Kidney node, being all the models linked together.

The result of the described work is a simulation where a rigid body, the model

of a kidney, can be controlled as necessary in position and orientation; two ad-

ditional bodies, the blood vessels, are attached to some point in its mesh and

rigidly attached to some other points in the space. When the kidney will rotate

or translate, the blood vessels will follow it (due to the applied constraints) and

will deform depending on the kidney’s movements. As can be seen in Figure 5.5,

the kidney’s model has been rotated of around 90° on the x-axis: as a result both

veins and arteries have deformed accordingly to the rotation.

Figure 5.5: The kidney has been rotated of around 90° on the x axis
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5.2 Simulating the kidney’s Local deformation

5.2 Simulating the kidney’s Local deformation

Root [...]

Constraints [...]

Sphere Solvers [...]

PartialFixedConstraints

SphereCollisionModel [...]

UniformMass

MechanicalObject

ConstantForceField

kidney MechanicalModel

TetrahedronFEMForceField

TetrahedronSetTopologyContainer

TetrahedronSetGeometryAlgorithms

UniformMass

VisualModel Mapping

Solvers [...]

CollisionModel Mapping

Monitor

SofaController

Figure 5.6: Graph of the local deformation simulation

In this simulation two main object are present: Sphere and Kidney. The main
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5.2 Simulating the kidney’s Local deformation

nodes necessary to the simulation are described in the Section 4.5 (Anatomy of

a basic simulation).

For the Kidney node: the MechanicalObject is a mesh that have been loaded

using MeshLoader, then we have the three nodes relative to the topology of

the mesh used (TetrahedronFEMForceField, TetrahedronSetTopologyContainer,

TetrahedronSetGeometryAlgorithms, described in Section 4.5), also necessary to

setup the FEM simulation: the Soft tissue material parameters for the kidney

can be found in Karimi and Shojaei (2017).

The mechanical, visual and collision model are referred to the same mesh and are

connected together using Mappings; the Monitor node will keep track of some

interesting points of the mesh that have been chosen.

The Sphere node contains only the CollisionModel: this collision model is,

in fact, a sphere of 1 [cm] of radius. It is represented by a rigid particle ad

MechanicalModel: being a rigid object, i can control its [x, y, z] position in the

environment from the SofaController and apply forces to it using the Constant-

ForceField node, that allows to set external forces [Fx, Fy, Fz] to be applied to

the particle.

The PartialF ixexConstraint node allow to block the motion of the particle along

one or more of the axes: this allows to control the sphere position perpendicularly

to the kidney’s surface and avoid sliding.

The result of the simulation will be a deformable body, the kidney, fixed in the

environment: is possible to interact with it by controlling a sphere in positon and

to apply force with it. By making the sphere colliding with the kidney, the latter

will deformate depending on the amount of force applied to it.

In Figure 5.7 is possible to notice the interaction between the sphere and the

kidney.
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5.2 Simulating the kidney’s Local deformation

Figure 5.7: Interaction between the kidney and the sphere from two different
point of view
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Chapter 6

The software development

A big advantages of the SOFA platform are its openness and flexibility due to

the possibility to use a Python script to define the simulation and easily interact

with it.

During the thesis time, i developed various Python scripts that has allowed me to

validate and build various aspects of the simulation and the whole architecture

around it (GitHub repository for the code, 2021).

SofaPython SofaPython is a plugin for SOFA: this plugin allows to interact

with different aspects of the simulation using a Python script as a controller.

This plugin allows various entry points, each one linked with particular events.

At each entry point an associated pre-defined function is defined, is then possible

to add some code to it that will be executed when that kind of event happens.

For my needs i used the following entry points:

• OnLoaded(): is called when the controller script has been loaded;

• InitGraph(): is called when the complete scene has been initialized;

• onBeginAnimationStep(): is called at the beginning of each time step;

• onEndAnimationStep(): is called when the simulation step ends;
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6.1 The software architecture

• onKeyPressed(): is called when a key has been pressed.

This plugin allows for a direct and handy way to interact with the simulation; i

used the first two entry point to initialize the variables and object, in particular

the second is very useful to initialize variables after all the object have finished

their initialization, being able to record the actual initial values (for instance the

position or velocities) before any motion begins.

The third and fourth allow for being able to read or modify the state of the object

before or after the simulation step has started or ended; I used those to make

an external script interact with the simulation, being able to send commands

precisely when the step is about to begin.

The last one allows for a ”per-key” input control: is possible to associate at each

key of the PC’s keyboard or mouse a different function. For instance, a key could

increase the position of an object on the x axis of a precise amount, increase the

rotation or the force applied or even to reset its initial position (all examples that

I implemented in my work).

6.1 The software architecture

In the figure 6.1 is presented an overview of the complete architecture that I have

implemented. The SOFA component represent the whole simulation program:

the Simulation sub-node is the actual simulation while SofaController is the

Python script that i wrote to interact with the simulation and that grants access

to the simulation using the SofaPython plugin for SOFA described in the previous

section.

In the onBeginAnimationStep entry point, called at the beginning of each sim-

ulation step, I implemented a bi-directional socket with a Python script external

to SOFA. The payload of the socket is a JSON file: this makes the communi-

cation easy to implement and very versatile, because the internal format of the

JSON file could be modified but the structure of the socket itself won’t change;

56



6.1 The software architecture

Complete ArchitectureComplete Architecture

SOFASOFA ExternalScriptExternalScript

PlotScriptPlotScript

SimulationSimulation

SofaControllerSofaController

JSON

JSON

Animation

Physics

Solvers

Socket1b

onBeginAnimationStep

Socket2b

onKeyPressed

RandomPositionGenerator

Socket1a

PositionGenerator

Socket2a

MatPlotLib

Keyboard MonitorLogFile

Figure 6.1: Scheme of the complete architecture
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additionally, there are libraries integrated in Python to deal with Sockets and

JSON files.

The external script gives commands to SofaController: during my work i made

a lot of different controls for different aspects, thanks to the versatility of the

communication using JSON changing the kind of data that was transferred was

quite easy and fast, once the base communication aspect was taken care of.

From the external script would so be possible to control many of the aspects of

the simulation and read data from it, making the necessary changes on both the

SofaController script and the external script. For instance, is possible to control

the position of a point in the simulation, the amount of ExternalForce applied

to it, its rotation (for the rigid bodies) and read data such as the position of the

point or the position, velocity or force on all the points in a mesh representing

an object.

Both the SofaController and ExternalScript programs are able to log the status

of some object or other information such as the simulation timestamp onto a

text file (not necessarily the same file), again in the JSON format for an easier

parsability, readability and re usability of the log at a later time. A new file is be-

ing generated each time the simulation or the external script are being launched

with a name that includes a timestamp of the launch, to avoid overwriting.

The entry point onKeyPressed is used when the user presses the combination

of CTRL and any other key: is possible to define a ’per-key’ specific code to run

whenever that happens.

6.1.1 Plot the state during the simulation

The PlotScript component is again written in Python; it uses a socket in a very

similar way to the one described for ExternalScript. Here i used the MatPlotLib

library to draw graphs: this allow to have a visualization on how the position,

velocity or force may change during the simulation time. The graph will output

on a window in the PC’s monitor and will give information about the state of the

objects that are being simulated in simulation time while this is running.
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6.2 Kidney’s blood vessels deformation simulation

Figure 6.2: Example of graphs plotted during the simulation

6.1.2 Data Parsing and analysis

The data collected from the simulation is logged in text files using a JSON format;

using this kind of format will allow the data to be read easily at any time from

another script that can parse the data in some new format that is more suitable

as input to the Neural Network or in other format standard like CSV.

I built another component to read the recorded data from the log file and than

plot it: this allow the user to check if the recorded dataset contains some issues

or unexpected values.

6.2 Kidney’s blood vessels deformation simula-

tion

In the simulation of the deformation of the blood vessels, the external script is

responsible of generating the new position and orientation of the Kindey’s me-
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6.2 Kidney’s blood vessels deformation simulation

chanical model. This will happen by applying a certain ratio-of-change of position

and orientation on all three the axes, [x, y, z]. The ratio-of-change could be spec-

ified manually or generated randomly: in both cases, the ratio will be referred to

a time period of 1 [s].

The simulation will communicate the simulation time at each step, together with

the current position and orientation of the kidney; the rate-of-change will be ap-

plied to those, depending on the chosen time step (in this case is 0.1[s]). The

computed pose and rotation will be communicated back to the Sofa Controller

script; the socket communication happens in the onBeginAnimationStep entry

point, so at the beginning of each time step. This means that the change in

pose or orientation will be applied at the beginning of each simulation step. In

this way, the External script know the amount of time that have passed from a

message to another and can compute the correct change to apply at the kidney.

At the end of the animation step, the current state of the kidney, the simulation

timestamp and the state of all the monitored points of the Artery and Veins are

logged in a text file. Both the socket communication and the file logging happens

using JSON formatted file.

If enabled, the randomly generated rate-of-change (and its relative position) will

change every 3[s] of simulation time: this allow for a semi-realistic continuous

change in pose and orientation over time. For both rotation and translation,

upper and lower bounds are specified for each axis: especially in the random sit-

uation, this avoid rotation of the kidney that could be dangerous or that cannot

be performed during a real surgery.

Additionally, there is also the possibility to control directly the Kidney’s pose

and orientation using keyboard key: each key can change the amount of rota-

tion’s degrees or translation distance separately for each axis.

The PlotScript will visualize position, force or velocity (or all three) of the point

chosen to be monitored; those will be represented in separate bar graphs, for both

the simulated objects.
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6.3 Kidney’s local deformation simulation

In the simulation of the local deformation, the external script is responsible of

control position and orientation of the sphere: the latter will mimic the tip of

an instrument of the daVinci robot. The tip will collide with the surface of the

kidney and impress a deformation on it.

The simulation will communicate the simulation time at each step: the external

script is can be controlled manually, by defining the starting point of the sphere

in the direction of the organ’s surface.

The computed pose and rotation will be communicated back to the Sofa Con-

troller script; the socket communication happens in the onBeginAnimationStep

entry point, so at the beginning of each time step. This means that the change

in position and force for the sphere will be applied at the beginning of each sim-

ulation step. When a new position and force for the sphere have been generated,

the organ deformation will reset to the initial state, to not be affected by the

previous one.

At the end of the animation step, the initial position of the ball, the current force,

the position of the three points in the kidney’s mesh closer to the deformation

and the simulation timestamp are logged in a text file. Both the socket commu-

nication and the file logging happens using JSON formatted file.

The external script can generate random starting point and relative starting force

for the sphere: this is done each 4 [s] of simulation time, to give the force gener-

ated by the deformation enough time to stabilize. Additionally, there is also the

possibility to control directly the position and force applied on the sphere for the

sphere using keyboard key: each key can change the amount of force directed or

the position separately for each axis .
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Chapter 7

Prediction model

7.1 Neural networks

A Neural Network is in general a graph composed of multiple neurons connected

with each other, generally in connected ordered layers, each one associated with

an array of weights. The neurons in NN comes conceptually from the human

neurons: like the natural ones, they can be connected in groups composing a

network.

The neurons will process the input data and return some output: the input data

will be weighted by some coefficients (Weights), then the Activation function will

generate the output depending on the weighted inputs. The activation function

is usually a nonlinear function that will map the sum of the weighted input to a

single output.

The learning phase (or training) is a crucial phase because it will define the

weights of all the neurons that composes the network, based on the a dataset

composed by some input and known output data; each sample will change all the

weights of a certain amount. This change can be a really small quantity or be

more relevant, depending on the input data itself and the algorithm used. Many

techniques can be used, such as the Gradient Descend that uses back-propagation

of the error. In some implementation of NNs, the weight can also change while
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7.1 Neural networks

Figure 7.1: An artificial neuron compared with an human one

the network is being used (online learning), when new data, not present in the

training dataset, passes through the network.

A network is composed by layers, each one have a certain amount of neurons:

• Input layer: is the first layer, it has as many neurons as the size of the

feature input vector (the number of columns of the input data set).

• Hidden layer: those are the layers between the input and the output layer.

Is possible to have many of those inside a network but the more of them are

present the more complex the training phase will become. Many different

kinds of those layers exists.

• Output layer: is the last layer, its output will be the one of the neural

network and will represent the final classification, having as many units as

the feature output vector.

A trained network can then be used to make predictions when given an input:

based on the network, the input data will flow along the layers of neurons, each

output of the layers will depend by the input given from the previous layer, to

the final output layer when the final result is given.
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7.2 Preparation of the data

As i described in Section 6.1 ”The software architecture”, during the simulation

some data relative to some point of particular interest is generated and then saved

on a Log file using the JSON format. If we want to use that data to train a model,

it has to be parsed in such a way that a Neural Network can take it as an input.

A Neural Network needs two main block of information: the input data set, that

contains all the data that will be used and the related output data set. The input

data set will be used in conjunction with the output data set for training phase.

After that, the input data set can be used for validation, comparing the output

of the model with the original dataset.

The data set is composed of multiple samples: each sample is identified by a cer-

tain number of output features, in this case the position and force of each point

of the simulation (belonging to the blood vessels) that is being monitored. The

input features associated to each sample are in this case composed by the position

and orientation of the kidney that moves (ideally randomly): the position and

force of each monitored point of the blood vessels will so be associated to position

and orientation of the kidney.

Both output and input feature data set are composed by raw matrices: the first

has as many rows as the number of collected samples and as many columns as

the number of features; the second has as many rows as the number of collected

samples and as many columns as the position and orientation data.

The input data from the log file will contain a lot of different samples and more

data than necessary: a script has to remove the unnecessary data, transform the

content into a row matrix and split the data and label set into two different files

(one for the data and one for the labels).

Both the datasets are then normalized in the range [0, 1] to help the learning

phase.
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7.3 Neural Networks in Python

To build a neural network is possible to use two very powerful framework, Keras

and Tensorflow, which fully supports Python and are very intuitive to use.

They will allow the use of the data sets generated from the simulation, after being

prepared, to build a fitting model based on it.

Tensorflow Tensorflow is a library, available for Python and other program-

ming languages, released by Google, that can be used to create deep learning

models. It offers a backplane for fast numerical computing, being the kind of

computation in machine learning composed of operation on matrices of big size.

Tensorflow contains multiple ad-hoc implementation to support different HW ca-

pabilities, for instance the use of AVX2, AVX512 or CUDA (when available), to

achieve faster computation time, for instance in the learning or inference process.

The computation in Tensorflow is described in terms of data flow:

• Node: a node perform a computation, can have zero or multiple input/out-

put;

• Edges: will define the flow of data between different nodes;

• Operation: abstract computation, represented by a directed graph;

• Data: represented in term of multi-dimensional arrays of real values.

Tensorflow is so a very powerful mathematical library that can be used as a back-

bone for a machine learning model implementation.

Keras Keras is a library for Python that can run on top on Tensorflow (in fact,

in the last versions of Tensorflow’s Python implementation Keras was integrated

into Tensorflow itself).

The creator of Keras had those principles in mind:
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7.4 Generating the data

• Modularity: allow for the model to be composed as a sequence of graphs

or just a single one, use deep learning models as discrete components that

can be combined in multiple ways;

• Minimalism: the library provides just the necessary tools to achieve an

outcome;

• Extensibility: new components can be added and created easily to add new

features;

• Python: this library was created with Python in mind and for this reason

is completely built using this language.

Keras was built to make the creation and development of model that uses deep

learning faster and easier, without having to use Tensorflow directly. It provides

API for the mathematical operations that are needed for deep learning, providing

interfaces called backends.

The main model type in Keras is called Sequential, a linear stack of multiple

layers, from the input to the output ones, with one or more levels in the middle.

To build and use a model in Keras is necessary to perform those steps:

1. Define the model: create a Sequential model and add the necessary layers;

2. Compile the model: specify loss function and apply various optimizers;

3. Fit the model: train the model on a dataset;

4. Make prediction and evaluate the model: generate some prediction and

validate them by comparing the expected value with the generated one.

7.4 Generating the data

As described in Section 6.1 (The software architecture), the data generated from

the simulation, regarding the position and forces of the points of the 3D models

that are being tracked, in addition to other information, is being written onto a
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7.4 Generating the data

log file while the simulation is running with a sampling rate of 10 [Hz].

Recording the simulation running for approximately 400 [s] of simulation time,

using the method described in Section 5.1 to generate random linear and angular

velocity for the kidney, will generate a time sequence of position and forces of the

points and position and rotation of the kidney. From each of those sequence I will

build a dataset to then be used to train or validate the model. The measurement

unit for the linear distances will be the centimeter while the one for the rotation

will be arcdegree.

Each sample of the datasets has this shape:

[x, y, z, Rx, Ry, Rz, x1, y1, z1, ..., xn, yn, zn]

7.4.1 Training sets

I generated a total of 17 dataset that will be normalized and then used to train

the neural network.

Dataset name Number of samples
1 0920114247 4642
2 0920121748 4464
3 0920125053 4272
4 0927225115 4870
5 0927232519 4101
6 0927235241 4136
7 0928113454 4374
8 0928120640 4065
9 0930134844 4625
10 0930142045 4101
11 0930144850 4103
12 0930151638 4030
13 0930174546 4783
14 0930184441 4212
15 0930195935 4168
16 0930203905 4589
17 0930212107 4761

Table 7.1: Training datasets
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7.4.2 Test sets

I generated a total of three test set to test the behavior of the network, using the

same metodology used for generating the training sets.

Dataset name Number of samples
1 0927221920 4392
2 0929110030 4382
3 1013115727 4156

Table 7.2: Test datasets

7.5 Training and inference pipeline

Figure 7.2: Training and inference pipeline of the Neural Networks

In the Figure 7.2 I present the pipelines for the training and inference phases.

In the training phase, i give as input the position and rotation of the kidney and

as reference output the position of the monitored points; I will build two neural

networks, one for the monitored points of the veins and one for the arteries sep-

arately.
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7.6 Build the models

In the inference phase, as input the position and rotation of the kidney is given

and the networks will return the estimation of the position of the monitored

points, for both arteries and veins. The quality of the estimation can than be

compared with the actual position of the point of the blood vessel to understand

how good the prediction is.

7.6 Build the models

7.6.1 Regression Neural Network

The first NN that I tried for my purposes is a Multi-layer Perceptron for Multi-

Output regression: the Perceptron is a single neuron model, precursor of the

modern deeper and larger networks that are composed of multiple and more

complex Perceptron-like layers. Each input is directly connected with the first

level (the input layer) and then a dense hidden layer: dense means fully connected,

all the neurons from the input layer are connected to each one of the neurons in

the hidden layer and the same can be said for the neurons in the hidden layer in

relation with the ones in the output layer.

# function to generate the model

def get_model(n_inputs , n_outputs):

model = Sequential ()

# hidden layer

model.add(Dense(50, input_dim=n_inputs ,

kernel_initializer=’he_uniform ’, activation=’relu’))

# output layer

model.add(Dense(n_outputs))

model.compile(loss=’mae’, optimizer=’adam’)

return model

The hidden layer in this case is composed by 50 neurons. The size of the output

layer will depend by the amount of features that are present in the data sets: in

my experiments I used different size of the output vector, having used the [x, y, z]
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7.6 Build the models

Figure 7.3: Scheme of the implemented regression neural network

positions of the various monitored points (described in Section 5.1, ”Simulating

the blood vessels’ deformation”) of the Vein or Artery simulated objects (that

vary in number of points), or the position in addition to the force directed in the

three axes (in addition to the three position the dataset will contain also the three

forces, for each of the monitored points). The size of the output will so be [3 ∗ n]

if we’re using the position of the monitored points or [6 ∗ n], if we’re using both

position and forces; n in this case is the number of points that we are tracking

from the simulation model. In the case of the veins, we will have 54 points, in

the case of the arteries 47. The size of the input one will always remain constant

and of size [6], three features for the [x, y, z] position and three for the rotation
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along the axes, [Rx, Ry, Rx].

To build the model i used the ReLu (Rectified Linear Unit) as activation function

for the neurons in the hidden layer: this is the most popular activation function,

Glorot et al. (2011) discovered that it allows for a better and faster training of the

network with respect to other activation functions, such as the logistic sigmoid

or the hyperbolic tangent.

The loss function used for this model is the mean squared error, which is the one

that is generally used for regression problems.

As optimizer, adam was chosen: the name comes from adaptive moment esti-

mation; Adam is a replacement optimization algorithm for stochastic gradient

descent for training neural networks which has good performance and is consid-

ered the best overall choice by Ruder (2017).

7.6.2 LSTM Neural Network

The previous neural network, while simple, is very powerful; still, there is an

information that that kind of network cannot exploit: time. Being in my case

the datasets composed of time sequences of poses of a kidney, I can use a kind of

neural network that is able to use the temporal information and use not just the

current input sample but also the ones before to infer the current output.

The LSTM (or Long Short-Term memory) is a Recurrent Neural Network (RNN)

architecture: recurrent in this case means that, differently from the standard

neural networks, this kind of NN is able to process entire sequences of data, hav-

ing feedback connection between the cells that bring the information regarding

previous sequences.

I used a multiple-to-one approach using a moving window (Figure 7.4): 30 sub-

sequent samples of a sequence (corresponding to 3 [s] of simulation time, being

the sampling time 0.1 [s]) are used as input to train the network and, again, 30

subsequent samples to infer the actual value.

The input for this neural network is not just a matrix composed by multiple

samples, each one with columns for the features: it becomes a 3D tensor, each

input sample is composed by a matrix containing 30 samples of the kidney’s pose:

71



7.6 Build the models

Figure 7.4: Moving window as input of the LSTM network

the current pose of the kidney and the 29 poses of the previous samples. The

output of the network will be the current estimated position of the points in the

veins/arteries, similarly to the previously explained network.

An LSTM unit is composed by a cell and three gates: input, output and forget

gate. The cell is the one that remembers the values and the three gates regulates

the flow of information that comes through the cell.

The information arrives to the forget gate: this gate decides if the current value

has to be discarded or kept.

Then the value arrives to the input gate after being subjected to a sigmoid acti-

vation function: this gate will decide how important the information will be: the

cell will then record the value, it will be much or less relevant, depending on how

important the input gate has reported it to be.

The output gate then reports what the next state will be, it contains information

from the previous states and can also be used for predictions. At each state, the

previous hidden state and the current input are concatenated and from them the
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Figure 7.5: Scheme of the implemented LSTM network

output is generated.

The structure of the implemented network is the following:

def get_model(n_inputs , n_outputs):

model = tf.keras.Sequential ()

# First LSTM layer

model.add(layers.LSTM(128 , input_shape=(None , n_inputs),

return_sequences=True))

model.add(layers.Dropout(0.2))

# Second LSTM layer

model.add(layers.LSTM(128 , return_sequences=False))

# Dense hidden layer

model.add(Dense(64, activation=’relu’))

model.add(layers.Dropout(0.2))

# Output layer

model.add(Dense(n_outputs , activation=’relu’))

model.compile(loss="mean_absolute_error",

optimizer=’adam’)

return model
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Similarly to the regression neural network, I used the same optimizer and loss

function.

I used an LSTM level which contains 128 units; the level will take as input 30

sequences; it will return the same sequences to the second LSTM layer (with the

same number of units) after being subjected to a Dropout layer. The second layer

will not pass the sequences but a single vector as output. The data passes then

to a Dense layer of size 64 (with ReLu as activation function), then a Dropout

and the final Dense layer that will constitute the output layer.
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Chapter 8

Analysis of the results

To validate the results, I trained the networks by using the training dataset listed

in Section 7.4.1 and then used the dataset for test listed in the section 7.4.2.

I built a script to infer a whole test dataset and, at the end, plot graphs that

compares the evolution of the position for each point in [x, y, z] between the

simulation results and the output of the model.

The regression model resulted in a decent accuracy in the predictions but the

quality of the estimation was not the same for all the point: some points are

correctly tracked but other points are not. The model built using LSTM layers

have a slightly better accuracy overall but, especially for some points that where

troublesome for the first network, the error is lower and the predicted evolution

of the position for most of the points is much similar to the one that comes from

the simulation.

I then built a script that allows to visually compare the result of the model and

the data that comes from the simulation, having them side by side. They will

follow the same instants of time and same position and orientation of the kidney

as input for both the simulation and the model.
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Figure 8.1: Comparing the prediction of the models with the simulation output
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8.1 The monitored points

From the results that is possible to observe from the visual output of the scripts

(the graph of the positions), both models are able to give a reasonable output

with respect to the results of the simulation. As a reminder, the features that I

keep in account are the [x, y, z] position of some handpicked points of the blood

vessels. While the simulation runs, the position of those points is logged and,

when the model is used, those are the features that are going to be predicted. In

the Figure 8.2 is possible to see the points that are being monitored for the veins.

Looking at the results of the vein’s neural network (but simular conclusion could

Figure 8.2: Monitored points for the veins
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be drown for the arteries one), is possible to observe that some points are being

tracked in a worse way than others: this behavior is usually consistent among the

datasets and the models. The points that are connected to the kidney or in its

neighborhoods are predicted very accurately, similar thing happens for the point

near the Vena Cava (the opposite side). This is probably due to the fact that the

points in between oscillate a lot while moving and the model is trying to compute

a mean value between the oscillations.

In the Figure 8.3 is possible to see a classification that I made from the results

Figure 8.3: Classification of the monitored points for the veins

in the inference of the test datasets: the point in green are the ones that can be

78



8.1 The monitored points

considered as good tracked, while the one in yellow are the ones that i considered

worse tracked. In addition, there are some points that i considered still, they’re

very close to the fixed constraint (on the Vena Cava) and for that reason they

do not move much, not just when inferencing from the model but also in the

simulation.

In general, among the datasets, is possible to observe that some lower or higher

peaks are not correctly predicted, especially in the points that i considered worse.

While for the good points the difference in tracking between the regression model

and the LSTM network is quite similar (they both behave well), the same cannot

be said for the worse points: the regression model is not very effective in predict-

ing their positions while the LSTM works quite better.

I will report here some of the points of the ”0927221920” training dataset (for

the veins’ points) comparing the results of the LSTM and the regression model.

For the point #11 is possible to observe that the while the regression model is

able to follow generally the trajectory, it fails to reach some of the peaks that are

instead reached (up to a certain amount) by the LSTM model.

Figure 8.4: Prediction of Point #11 using the Regression model (left) and the
LSTM (right)
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For the point #12, is possible to make similar observations to the ones for the

point #11: the trajectory is generally tracked well by the LSTM, peaks included.

The point #31 is one of the worse tracked point of the dataset, and this is very

Figure 8.5: Prediction of Point #12 using the Regression model (left) and the
LSTM (right)

evident if we look the result of the regression model. The LSTM works better,

especially on the y and z axes.

Figure 8.6: Prediction of Point #31 using the Regression model (left) and the
LSTM (right)
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Again, for the point #32 we can draw similar conclusions: the LSTM works

better, especially in the peaks.

Figure 8.7: Prediction of Point #32 using the Regression model (left) and the
LSTM (right)

The point #38 is one of the best tracked points: the result from the regression

model is quite good but the one that comes from the LSTM is even better.

Figure 8.8: Prediction of Point #38 using the Regression model (left) and the
LSTM (right)
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Similarly to the point #38, the point #50 has a nice tracking in the LSTM over

all the sequence.

Figure 8.9: Prediction of Point #50 using the Regression model (left) and the
LSTM (right)

8.2 Comparing the models using metrics

To compare the results between the two models and also between the models

and the original sequence i used three metrics: the mean Gaussian distance, the

Pearson Correlation Coefficient and the Dynamic Time Warping (DTW).

For the Gaussian distance, I computed the mean distance between each point

of the original sequence and the predicted one axis by axis, then the final mean

Gaussian distance between the points, expressed in centimeters.

The Pearson correlation index is a measure of linear association between two

sets of data; in particular, is the ratio between the covariance of two variables

and the product of their standard deviations. The result of the computation will

return a value P ∈ [−1, 1]: 1 means that the sequences are positive correlated,

−1 means that the sequences are negative correlated, while 0 means that there

is no correlation at all. For my purposes, I would like a value that is as close as

possible to 1. To compute this index, I have reshaped the time sequences of the
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dataset (two dimensional, being time sample of the position of multiple points)

into a 1D array, then I used the scipy implementation (Scipy is a Python Open

Source library offering mathematical instruments and algoritm).

The DTW is a method to measure the similarity between multiple time series: it is

invariant to time warping and this makes it able to find correlation that wouldn’t

be evident when using the mean Gaussian distance. To compute it I used the

fastDTW library for Python, using a window of 30 samples and euclidean as the

method to measure the distance.

I will compute those metrics for each of the test dataset between the original

sequence and the inferred one, then the result from the different models will be

compared.

8.2.1 Analysis on the test set ’0927221920’, veins

To give a better understanding of the effectiveness of the models and the differ-

ence between them, just for this dataset, I reported in Table 8.1 containing the

mean distance between the output of the simulation and the prediction of the

models, among the three axes for each single point. The distance is expressed in

centimeter: is possible to appreciate the fact that the LSTM has an error that

is marginally better than the regression model. The average value for the axes

are: [0.295, 0.3245, 0.319] for the Regression model and [0.244, 0.27, 0.257] for the

LSTM.

The maximum error can be found for the points 31-35 for both models: those

points moves quite a lot during the simulation so we can expect an higher error.

We can then consider the Gaussian distance in average of all points: for the Re-

gression model, it averages to 0.626 while for the LSTM is 0.514 (the lower, the

better).

The Pearson correlation index between the simulation results and the Regression

model is 0.955, comparing it with the LSTM the index becomes 0.969 (the higher,

the better).

For the DTW, the distance between Regression model and simulation is 22437.56,

the distance between simulation and LSTM is 18430.49 (the lower, the better).
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Regression Model LSTM Regression Model LSTM
# x y z x y z # x y z x y z

0 0.050 0.073 0.052 0.047 0.066 0.045 27 0.293 0.172 0.291 0.250 0.149 0.219
1 0.072 0.078 0.063 0.062 0.070 0.056 28 0.317 0.231 0.364 0.278 0.199 0.276
2 0.110 0.087 0.083 0.096 0.078 0.073 29 0.363 0.295 0.449 0.325 0.255 0.348
3 0.159 0.101 0.113 0.133 0.088 0.100 30 0.466 0.347 0.518 0.409 0.293 0.381
4 0.192 0.107 0.147 0.159 0.095 0.121 31 0.550 0.395 0.614 0.472 0.336 0.415
5 0.193 0.133 0.143 0.157 0.111 0.118 32 0.553 0.455 0.660 0.446 0.371 0.437
6 0.196 0.234 0.176 0.160 0.189 0.135 33 0.550 0.478 0.641 0.446 0.411 0.443
7 0.255 0.388 0.298 0.211 0.318 0.220 34 0.596 0.536 0.605 0.481 0.460 0.450
8 0.333 0.420 0.375 0.274 0.356 0.287 35 0.572 0.514 0.550 0.469 0.412 0.394
9 0.369 0.487 0.453 0.299 0.407 0.346 36 0.534 0.557 0.447 0.421 0.431 0.346
10 0.365 0.536 0.480 0.295 0.433 0.362 37 0.494 0.481 0.423 0.380 0.343 0.309
11 0.361 0.444 0.466 0.287 0.357 0.366 38 0.393 0.404 0.348 0.299 0.270 0.265
12 0.342 0.365 0.417 0.264 0.317 0.317 39 0.312 0.309 0.276 0.258 0.212 0.236
13 0.283 0.339 0.347 0.233 0.300 0.244 40 0.259 0.235 0.223 0.293 0.204 0.248
14 0.327 0.354 0.349 0.295 0.309 0.264 41 0.197 0.142 0.170 0.166 0.119 0.126
15 0.265 0.211 0.186 0.204 0.225 0.179 42 0.223 0.231 0.173 0.183 0.193 0.131
16 0.171 0.259 0.228 0.153 0.214 0.170 43 0.209 0.253 0.200 0.177 0.208 0.155
17 0.232 0.368 0.291 0.212 0.289 0.238 44 0.226 0.244 0.219 0.182 0.218 0.185
18 0.250 0.411 0.294 0.222 0.325 0.242 45 0.262 0.280 0.308 0.208 0.248 0.257
19 0.246 0.433 0.324 0.215 0.371 0.283 46 0.278 0.336 0.321 0.216 0.264 0.278
20 0.266 0.456 0.337 0.229 0.413 0.307 47 0.274 0.355 0.290 0.211 0.278 0.259
21 0.295 0.469 0.360 0.240 0.397 0.345 48 0.269 0.299 0.276 0.200 0.250 0.247
22 0.281 0.490 0.364 0.230 0.426 0.368 49 0.255 0.269 0.285 0.206 0.238 0.236
23 0.247 0.496 0.344 0.218 0.436 0.335 50 0.243 0.280 0.297 0.181 0.239 0.238
24 0.281 0.385 0.335 0.253 0.328 0.310 51 0.231 0.277 0.270 0.169 0.223 0.241
25 0.252 0.444 0.328 0.220 0.389 0.294 52 0.216 0.237 0.250 0.153 0.185 0.255
26 0.247 0.134 0.217 0.205 0.121 0.167 53 0.179 0.201 0.226 0.150 0.185 0.244

Table 8.1: Comparing the distance from the points in the simulation to the
predicted ones between the Regression model and the LSTM
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8.2 Comparing the models using metrics

8.2.2 Summary table for the veins datasets

Regression LSTM
927221920 Mean dist. [x, y, x] [0.295, 0.3245, 0.319] [0.244, 0.270, 0.257]

Mean Gaus. Dist. 0.626 0.514
Pearson index 0.955 0.969
DTW distance 22437.56 18430.49

929110030 Mean dist. [x, y, x] [0.319, 0.364 , 0.425] [0.236, 0.294, 0.312]
Mean Gaus. Dist. 0.736 0.564
Pearson index 0.930 0.961
DTW distance 26407.92 19954.57

1013115727 Mean dist. [x, y, x] [0.326, 0.386, 0.397] [0.335, 0.396, 0.418]
Mean Gaus. Dist. 0.735 0.765
Pearson index 0.923 0.920
DTW distance 25196.87 25483.59

Table 8.2: Metrics of the vein’s datasets

8.2.3 Summary table for the arteries datasets

Regression LSTM
927221920 Mean dist. [x, y, x] [0.493, 0.482, 0.419] [0.441, 0.453, 0.403]

Mean Gaus. Dist. 0.927 0.861
Pearson index 0.959 0.964
DTW distance 30595.99 27530,58

929110030 Mean dist. [x, y, x] [0.462, 0.557, 0.646] [0.423, 0.533, 0.585]
Mean Gaus. Dist. 1.119 1.029
Pearson index 0.935 0.944
DTW distance 36546.24 33132,93

1013115727 Mean dist. [x, y, x] [0.549, 0.612, 0.702] [0.599, 0.607 , 0.751]
Mean Gaus. Dist. 1.242 1.296
Pearson index 0.924 0.916
DTW distance 38211.77 38463.96

Table 8.3: Metrics of the arteries’ datasets

85



8.3 Concluding remarks on the models

8.3 Concluding remarks on the models

The metrics that I proposed confirm what is possible to see visually from the

graph representing the evolution of the position of the points: the LSTM model

usually outperforms the Regression model. This is by far more evident while

analyzing the result for the veins : in this case, the Regression model is definitely

less effective and the LSTM is able to perform much better in all the proposed

test dataset.

Is interesting to note that the LSTM has usually better performance than the

Regression model, except for the ’1013115727’ set: in this case the performance

will regress on most of the proposed metrics, for both the veins and arteries

datasets.

After the conclusions, it can be found an appendix chapter (Additional graphs)

containing the graph for the position for all the points of some datasets so it

would be possible to compare all of them point by point.

I consider the results good and very promising for future works: the models

have to generate an output composed by 162 or 141 (veins or arteries datasets,

[x1, y1, z1, ..., xn, yn, zn, ] position of the points) from an input of just 6 features

([x, y, z, Rx, Ry, Rz] of the kidney) and such is a quite complex task.

The neural networks that I implemented are not too complex from the structure

standpoint, I think that the result could possibly improve if a more complex

Neural Network is used.

Additional, those networks are very sensitive to the amount of training data they

have at disposal: by doubling the training set (from 8 to 17) I observed that the

results have improved by a small but significant margin, that could be observed

just by looking at the graph of the evolution of the points.
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Chapter 9

Conclusion

This study has been an initial analysis that would bring to the final objective of

building an augmented surgery application. This is one of the most recent and

advanced field of studies in Robotic surgery: the ability to track the deformation

on human organs during surgery is a very complex task, due to the constraints in

space and the necessity of being as minimally obtrusive as possible (ideally not

obtrusive at all).

We have found the estimation of the deformation of the blood vessel attached to

a kidney a very interesting problem to analyze, having the possibility to measure

the pose of the kidney. Being able to estimate the position of the blood vessel, it

would be then possible to give the surgeon information about their deformation,

if they are in a dangerous position or even to show on the visor offered by a robot

such as the daVinci a 3D model of them super-imposed on the camera stream.

To be able to draw some conclusion has been necessary to build from scratch a

simulation, the architecture around it and then some models to compare.

The simulation has been implemented using SOFA and can be personalized from

the actual patient: the data used to build the 3D models used in the simulation

comes from the CT scan of the patient and, after some processing, can be im-

ported in the simulation. I would then use the simulation as a source for data

that i will the use to build a model.
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In Figure 9.1 is possible to appreciate the SW architecture and the data flow

that I have thought out to be able to build the dataset; those will be then used to

train and validate the models. The ControlScript connects bidirectionally with

the simulation (using the SofaPython plugin): the script will generate random

linear and angular velocities that will change the pose of the kidney in the actual

simulation. The kidney will so move and because of that the attached blood ves-

sels will deform. The data has then to be logged in a text file; the content of the

text file will be used to generate a dataset (for both veins and arteries). Once a

certain amount of dataset have been collected, is then possible to build a model:

the datasets will serve now as training data and, when the training process ends,

is possible to save the obtained Neural Network to reuse it later.

Figure 9.1: Sw architecture to train the model

In Figure 9.2, instead, is shown the SW architecture and the data flow imple-

mented to inference from the model while the simulation is running: the first

part is the same as the training phase, the external control script will give linear

and angular velocity commands to the simulation to control the pose of the kid-

ney. In this case, the data won’t be just saved but it will be also sent to another

script. The latter will receive the current state of the simulation (the pose of

the kidney and the current position of the monitored points, for both veins and
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arteries) and, after having loaded the Neural Network previously trained, it will

be able to give the pose of the kidney as input to the network and so predict the

position of the chosen points.

Figure 9.2: Sw architecture to inference from the model

The script has an additional feature: is able to plot in real time the current po-

sition of the monitored points side by side with the current position predicted

by the model. As can be observed from Figure 9.3, it is so possible to visually

compare the simulation, the results of the simulation and the results from the

trained model. I added in both the plots an additional element, the indicator of

the frame of the kidney (located in its 3D model’s barycenter): this will evolve

in position and rotation in the same way that the kidney in the simulation does

and can be an useful visual feedback representing how the organ is moving.

In principle, it could now be possible to discard the simulation in the inference

phase and attach the architecture to a flow of data that comes from an actual

organ, once a reliable source for the data will be validated.
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Figure 9.3: Predicting in real time the shape of the blood vessels

The 3D model that I used in the simulation was unfortunately not specific for

the use in the simulation but was just for visual support and aid to the surgeon.

This means that the model had some geometrical issues that would make the

simulation not actually ”true to life”. The solution to this problem would be to

use a model built specifically to be used in the simulation.

To build the augmented surgery application with holograms superimposed on

the real organs, is also necessary a way to rebuild the entire organ 3D model from

the subset of points available: i picked around 150 points while the 3D model has

vertices in order of the thousands. The output of the neural network (when all

points are connected) has a shape that is very similar to the 3D original model

and for this reason build back the original shape should not be too hard, using

interpolation techniques from the available points.

If the goal of the augmented surgery application wouldn’t be the graphical rep-

resentation but, instead, giving contextual information to the surgeon, it would

be possible to generate a model with information derived from the previous one

to alert him when a dangerous situation could be encountered.

The approach I used was inspired by some of the works that can be found in

the literature but studying the deformation of the blood vessels when moving the
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kidney and then try to build a model from predicting the deformation is, to my

knowledge at least, unique. The obtained results with the complete architecture

I designed are promising, there is still a lot that can be made to make it better

and usable in the practice.

To conclude, I hope that my contribution will be useful for future works: the

augmented surgery can be extremely helpful, especially during complex surgical

operations. The possibility of simulating a surgery (or by using a model to avoid

the heavy computation necessary for the simulation) can be useful also during

the training of future surgeons.
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Appendix A

Additional graphs
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Figure A.1: Output of the Regression model compared with the original sequence
(Dataset ’027221920’, veins)
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Figure A.2: Output of the Regression model compared with the original sequence
(Dataset ’027221920’, veins)
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Figure A.3: Output of the Regression model compared with the original sequence
(Dataset ’027221920’, veins)
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Figure A.4: Output of the LSTM model compared with the original sequence
(Dataset ’027221920’, veins)
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Figure A.5: Output of the LSTM model compared with the original sequence
(Dataset ’027221920’, veins)
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Figure A.6: Output of the LSTM model compared with the original sequence
(Dataset ’027221920’, veins)
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Meier, U., López, O., Monserrat, C., Juan, M., and Alcañiz, M. (2005). Real-time
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