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Abstract

Communication is a fundamental aspect of our lives. It has progressed
along with the evolution of human beings and uses many different
modalities. Among them, non-verbal communication plays a central
role. To create a more spontaneous interaction between humans and
robots, social robots should be able to understand all the informa-
tion we convey during interaction, including gestures. However, the
gestures analyzed in the literature are often unnatural, synthetic and
without social relevance.
To this regard, (i) we collected a dataset with 2884 examples of twelve
common Italian hand gestures using a custom-made inertial glove,
through experiments organized as human-robot interactions. The col-
lection took place in two successive phases, in which participants re-
produced gestures before and after watching a short illustrative video.
The robot guided the acquisition and provided a brief description of
the social context in which each gesture could be used.
We propose (ii) an analysis of the collected gestures, aimed at iden-
tifying their most informative features, which are 27% of the total,
and investigating common behaviours adopted by participants during
the experiments, such as the similarity in the way two specific classes
are performed. We propose (iii) an offline gesture recognition model
based on Long-Short Term Memory (LSTM) Recurrent Neural Net-
work (RNN), showing that the performances evaluated on the data
collected in the final session are better than the ones evaluated on
the initial session. Moreover, we discuss the benefits of reducing the
number of considered features, such as a 7.5% increase in the model
accuracy.
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Chapter 1

Introduction

1.1 Motivation

In the past few years, research has shown that social robotics may bring major
benefits to the lives of people. Robots could be used in public spaces, education
and personal care (17). In order to be truly effective in the interaction, robots
should understand human communication signals.
Communication plays a fundamental role in the course of our lives. From the
moment we are born, we unconsciously participate in the process of acquiring
the rules of communication. This occurs slowly and includes multiple forms of
communication existing in our daily lives. They are often referred to as verbal,
when they relate to the information content of the message itself (i.e., what we
vocally transmit); paraverbal, when referring to the way in which we convey the
message (i.e., the tone of voice); non-verbal, when referring to facial expressions
and gestures (18).
Without loss of generality, human communication can also be categorized ac-
cording to the intentionality of the interlocutor: it can be explicit, if two or more
people intend to exchange information (19), or implicit, if a person communicates
to others unintentionally, e.g., through eye gaze or body posture (20).

Unlike what it may seem, non-verbal communication plays a central role in
human interactions. The importance of non-verbal communication has been un-
derlined by studies carried out by Mehrabian, a psychologist who has shown that
the communicative message inferred from non-verbal language corresponds to
more than half of the total information content (21).
Consequently, to achieve a successful level of Human-Robot Interaction (HRI),
robots should not only be able to process verbal information, but should rather
understand all the information content derived from interactions, with great inter-
est in what is communicated in the gestural channel. In this regard, to recognize
gestures, it is necessary to develop models which, on a probabilistic basis, allow
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1.2 Goal

to distinguish between different classes of gestures.
The literature contains many examples that address gesture recognition. As we
will see in the bibliography review, some of them are “image-base” and work
using cameras, while others are “sensor-based” and involve the employment of
inertial sensors, as the case for this study. However, the gestures considered in the
literature are usually artificial and synthetic (22) - (23). Instead, to pursue the
feasibility of more natural and spontaneous human-robot interactions, we would
like to focus our attention on gestures closely related to non-verbal communica-
tion, with a strong social connotation and clear real-world applications. Hence,
we will consider the Italian Hand gestures.

1.2 Goal

The purpose of this thesis is to carry out a pioneering study on Italian gestures,
a form of explicit, culture-oriented, spontaneous and yet very specific non-verbal
communication. To perform this analysis, we will collect a novel dataset, con-
taining 12 of the most popular examples of gestures in the Italian culture.
The dataset will be collected through experiments organized as human-robot
interactions, mediated by the first prototype of inertial glove that, during the
experiments, will be worn in the participant’s right hand.
In these experiments, the humanoid robot iCub will be in charge of the data col-
lection, allowing the human operator to be completely excluded from the scene.
The goal of iCub will be to guide participants in the data collection by providing
imaginary situations, identical for all, meant to help immerse themselves in the
social context in which they perform the corresponding Italian gesture.
Besides the data collection, the contribution of this study is to provide an in-
depth analysis of the Italian gestures. First, we will investigate the presence of
similarities in the way participants perform specific gestures, with the goal of
identifying the presence of similar patterns. In addition, we will explore whether
fewer inertial sensors can be used than the 11 on the glove employed during the
experiments.
Once these analyses are completed, we will move on to the topic of gesture recog-
nition, the last contribution of this work. In the literature, there are many studies
addressing gesture recognition through wearable sensors (9) - (8) - (24). How-
ever, as mentioned above, most of them focus on artificial and simplified gestures.
Instead, the Italian gestures, which are natural and spontaneous, evolved along
with other human communication channels, and this makes them conceptually
different from the aforementioned synthetic gestures. On the other hand, the
spontaneity and personal style by which people perform Italian gestures implies
a high variability in their execution, which could lead to difficulties in recognition.

3



1.3 Thesis structure

Therefore, we will address the topic of gesture recognition through an already es-
tablished approach available in the literature (10), based on neural networks able
to learn temporal dynamic information.
Then, we will implement a probabilistic classifier that, once trained, will recog-
nize the gestures in the dataset. The model will be trained and tested offline,
according to standard approaches based on cross-validation. According to the
findings discovered during the features analysis, we will investigate the possibil-
ity of training a model based on a subset of features, establishing if it performs
better than the model trained with the whole set of the features.

1.3 Thesis structure

The structure of this thesis is organized as follows. Chapter 2 is devoted to the
literature review, where we discuss, in a general sense, human communication
and its implications in the field of robotics. Hence, we briefly describe Italian
gestures and the model of the human hand on which the inertial glove is based.
More importantly, we review the state of the art of gesture recognition. The
review is comprehensive and covers both the initial stages of data collection, with
a focus on the technologies used for this purpose and their implications, and the
implementation of the recognition model. The latter is analyzed at a general
level, examining both model-based and data-driven approaches and providing
their respective advantages and drawbacks.
Chapter 3 is devoted to the experiment description, where we describe the exper-
imental protocol and the most important components, e.g., the humanoid robot
iCub and the custom-made inertial glove. We explain in detail the role of the
participant during the experiment, describing precisely his/her tasks. Further-
more, we specify details such as the duration of the experiment and the definition
of the gesture dictionary considered in the study.
In Chapter 4 we explain the software implementation needed to carry out exper-
iments, providing details on the overall architecture. According to their purpose,
the explanation is divided into three modules. The first one is ROS-based and
deals with low-level tasks, e.g., the inertial data acquisition driven by the glove.
The second is YARP-based and handles the interaction with the robot.
The last module, which is the main one, communicates with the other two and
manages different aspects of the experiment, e.g., robot behavior, data collection
timings and inertial data storage.
Chapter 5 covers the topic of data analysis, where we reduce the number of fea-
tures through data-driven techniques and investigate common behaviours adopted
by participants during the experiments. Moreover, we identify the most informa-
tive features through data-driven selection algorithms.

4



1.3 Thesis structure

In Chapter 6 we address the topic of gesture recognition. At first, we describe
data pre-processing, i.e., normalization, automatic segmentation, padding, and
then we describe the model selected for gesture recognition. More specifically, we
describe the approach used to test its performance, i.e., cross-validation. Lastly,
given the subset of the most informative features (identified in Chapter 5), we
train a new model with that subset, compare its performance with those of the
original one and evaluate the preferred solution.
Finally, in chapter 7 we summarise the work that has been carried out during
this thesis and the contribution it brings. We also point out some limitations of
the current state of the study, providing some ideas that could overcome them
and make the study more interesting.
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Chapter 2

Literature review

2.1 Human communication

Generally speaking, human communication is carried out in different modalities.
Verbal communication is the common one to think about: it is the easiest way
humans communicate, since it allows those who talk to directly tell something
to the interlocutor. However, it is not always possible to speak: there are some
situations where other channels must be used. This may be the case of two people
talking in different languages, which will not be able to understand each other
through words; or it may be the case of a very young child, who is not able to
talk yet. In both the previous examples, the intention of the individual will be
expressed through different channels. In particular, the child will use his facial
expression (i.e., smiling) and his body (fast arm/hand movements) in order to
communicate with the parents his needs.

Communication that does not involve words is referred to as non-verbal. One
example of such communication can be found in the orchestral context: the con-
ductor provides real-time information to the orchestral members, by moving the
wands in his hands in specific ways. This kind of communication is also referred
to as explicit. On the other hand, there exists implicit non-verbal communication
as well. As described in (25), it is not consciously performed by the person, like
the direction of the gaze that may occur whenever an action needs to be per-
formed. For example, a person looking for the exit label in the walls of a public
office may be the sign of the start of a walking motion; or more simply, a child
looking at a toy may be the signal of the child’s intention to grasp that object.

Sensorimotor communication is a very specific type of communication, which
is useful whenever two or more people need to carry out a task that requires
coordination. The concept of sensorimotor communication can be explained with
the following example: suppose that two people drive two carts, one each, in
series. If, at a certain point, the person leading the other one sees a sharp turn

6



2.1 Human communication

headed, he/she may change the cart trajectory so that the person in the back
understands the danger in advance.
This example evidences a common characteristic of sensorimotor communication:
it is carried out in the same channel of the action (26).
According to Pezzulo et al. (26),“sensorimotor communication emerges as part
of a strategy that enhances coordination and the success of joint action”. By
slightly changing the action a person is performing, it is possible to communicate
information to another person within the action itself. As a consequence, the
change in the action may be considered as a cost. In fact, coming back to the
previous example, the person approaching the sharp turn had to change his cart
trajectory, thus increasing the distance covered. However, this cost was repaid
by notifying the other person of the danger to act accordingly.

Candidi et al. carried out an experiment (1), involving a couple of people: one
is the person who leads the action (that consists of grasping a given object); the
other follows and imitates the action performed by the leading person. Besides,
the imitation process is symmetric: another object, equal to the original one, is
grasped in a symmetric position, as shown in Figure 2.1 (right). The goal of the
experiment was to understand the sensorimotor communication adopted by the
leader and the follower when a reciprocal simultaneous motion is performed: when
the leader grasps the object from a given point (maximum height, as depicted
in Figure 2.1 - right), the follower has to grasp another equal object from the
opposite direction (minimum height).
With their study, the authors noted the tendency of the leader to change his
kinematic motion in order to implicitly communicate with another person. In
practice, this means that when the leader has to grasp the object from its highest
point, he tends to increase the height of the wrist trajectory. On the contrary,
when he has to grasp the object from its lower part, the wrist trajectory will be
complementary to the previous case.
Finally, they noticed that the level of synchronization increases as the implicit
communication increases: the more the trajectory is different from the original
one, the more the two people understand each other.

In the previous experiment it was proved the possibility to signal spatial in-
formation. However, there are other object properties like weight, fragility and
temperature. These are referred to as hidden properties and are characteristics
of objects that are not directly perceivable until a person has the possibility to
interact with them.
In this context, Schmitz et al. investigated whether it was possible or not to use
sensorimotor communication to signal hidden object properties (27). They dis-
covered that one person can non-verbally communicate the weight of an object to
another through sensorimotor communication. The person managing the object,
who knows in advance the weight of what is grasping, will change his action such

7



2.2 Communication in HRI

Figure 2.1: Experimental set-up (left), example of experiment (right) (1)

that the other person can estimate the weight of the object. More specifically
they evidenced that, when an object is light, people tend to grasp it from the
top; on the contrary, when an object is heavy, they grasp it from the bottom.

2.2 Communication in HRI

It has been shown what sensorimotor communication is, how it is used for human-
human interaction and why it is important. Starting from these premises, it is
possible to extend the principles to robots so that a sensorimotor communication
between humans and robots holds, and the overall performances of the HRI are
increased.

Sciutti et al. showed that humans can non-verbally communicate hidden ob-
ject properties (e.g., the weight) (2). Depending on the vertical velocity peak and
on the duration of the movement, it is possible to distinguish light objects from
heavier ones: their experiment shows that, when a person grasps heavier objects,
the time duration of the movement is longer and the velocity peak is smaller.
These considerations have been taken into account when designing the HRI.
Through their experiment, which consisted in a person watching iCub (humanoid
robot described in (28)) grasping objects of various weights, they concluded that
humans can implicitly understand the weight of an object even though they know
nothing in advance about it. However, the weight estimation is possible only if
the robot motion respects the previous criteria of the human-human interaction:
different peak velocity and different time duration for objects of different weights.
This is shown in Figure 2.2; the three pictures describe the velocity of the motion
of a human (top image) and iCub (middle and bottom images). The top figure
proves that the velocity of the operation carried out by the human depends on
the object’s weight. The middle image depicts iCub performing a motion without
taking into account the constraint on the weight-velocity. The bottom image rep-
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2.2 Communication in HRI

resents the case where iCub follows the weight-velocity constraint. In a realistic
82 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 6, NO. 2, JUNE 2014

The Human condition of the experiment was structured in
three phases: Known, in which the subject first experienced the
weight of the bottle and then lifted it from the scale to place it on
a higher support (scale height: , support height: , dis-
tance: );Unknown, in which the subject had to perform the
lifting of the bottle directly from the scale without having any
previous information concerning its weight; Observation [see
Fig. 1(b)], in which the subject had to observe a human actor
transporting the bottle to the scale from a starting point
away and below; after that, he had to first provide a verbal
judgment about the weight and then perform the lifting move-
ment, placing the bottle onto the higher support. Each of the
three phases consisted of 32 trials performed in random order
(i.e., eight lifting movements for each of the four bottles). Also
the order of the three phases was randomized among subjects.
The Robot condition [see Fig. 1(c)]—performed by a dif-

ferent group of subjects—was instead structured in two phases:
Standard, in which the subject had to perform the lifting of the
bottle after having observed the lifting of the same bottle ex-
ecuted by the robot in a invariant way, i.e., with no variation
in the action kinematics as a function of the lifted weight. In
an another phase (Proportional) the robot lifted the bottles with
different action kinematics for different weights (see Fig. 2 and
Section II-F for more details). In both cases, after having ob-
served the robot lifting, subjects were requested to judge the
bottle weight, before performing the lifting themselves. Each of
the two phases consisted of 15 trials performed in random order
(i.e., five lifting trials for each of the three bottles). Also the
order of the phases was randomized among subjects.
Before each experiment subjects were trained with a

metronome to perform the lifting of the bottles at about a
constant pace (each movement lasted about ). During this
training phase subjects lifted two transparent bottles (100 and

respectively) used as samples in order to provide an
idea of the range of weights used in the real experiment. In
addition, before both Robot phases, they were also familiarized
with the robotic actions through the observation of the lifting
of the same two transparent bottles performed by the robot.
Participants were told that they would have been watching
bottles with a weight varying in a range between 50 and .
The analog scale was obtained by inserting a load sensor into
a custom built structure and was used to record load forces
during the lifting of the bottles at a frequency of .

E. The Actors

In many of the experimental conditions, the task required that
an actor performed a lifting action in front of the subject. When
the demonstrator was human, she was informed of object weight
before action execution. This choice was made to mimic the
natural object-passing scenario, where the person who manipu-
lates the object first is usually aware of its weight. In all Robot
conditions, we used the humanoid robot iCub as action demon-
strator. ICub is a humanoid robot developed as part of the EU
project RobotCub. It is approximately 1 m tall with the appear-
ance of a 3.5 years old child [16]. Its hands have nine degrees of
freedom each, with five fingers, three of which independently
driven. All motors are placed remotely in the forearm and the
hands are completely tendon driven. To avoid any balancing

Fig. 2. Trajectories and velocity modulus (insets) of the demonstrator’s end
effector for the various bottles weight in the different experimental conditions.
Photos are snapshots of the movies used as stimuli in theWeight Judgment Task.
The movies have been prepared by Laura Taverna.

issue during lifting, the robot was fixed at the torso during the
proposed experiments. In theHuman experiment the kinematics
of the action demonstrator was recorded at by means of
an infrared marker (Optotrak Certus System, NDI) placed on
the demonstrator’s right hand at the level of the metacarpopha-
langeal joint of the middle finger. In the Robot condition instead
the kinematics of the robot actions was recorded by computing
the end effector position from the joints state measured through
the encoders of the motors in the robot arm and saving the hand
coordinates on a file at a sample frequency of [17].

F. Lifting Actions Features

The robot was programmed to perform two different types
of motion in two different conditions (Standard and Propor-
tional). In the Proportional condition, robot movement kine-
matics varied as a function of object weight, with, in partic-
ular, a smaller vertical velocity being associated to an increase
in weight. This choice was motivated by previous research (see
[18] and [19]) and by the analysis of human behavior during
lifting of different weights (see Section III-A1 of the results for
more details). On the contrary, in the Standard condition, robot
kinematics was planned independently from object weight. In

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 20,2020 at 11:40:03 UTC from IEEE Xplore.  Restrictions apply. 

Figure 2.2: Velocities and trajectories of: human operator (top); iCub without
respecting the motion criteria (middle); iCub respecting the motion criteria (bot-
tom) (2)

HRI scenario, the robot should be able to understand:

• biological motions
• object fragility

Understanding biological human motions is very important in a real HRI context,
where humans and robots work together in coordination, as it could happen in
facilities.
However, to make it possible, it is necessary that the safety of the human operator
is assured. This concept is very popular among people and it is known as the first
Asimov law of robotics. To achieve this, the robot must understand whether or
not a movement is being performed by a human being (29), in order to preserve
the safety of the human operator.

Object fragility is a hidden property that may define the efficiency of the
HRI. Indeed, in a smart home scenario, the robot should understand if the ob-
ject grasped by the person is fragile or not, and then act as a consequence. The
fragility property can be extracted by looking at how a person approaches an
object: if he is careful the action will have different characteristics with respect
to the ones typical of a careless action.
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Fig. 4. The trajectories for each character.

B. Experimental Setup

1) Task: We chose a task like the one in Fig.1: reaching
for one of two objects present in the scene. The objects were
close together in order to make this an ambiguous task, in
which we expect a larger difference between predictable and
legible motion.

2) Manipulated Variables: Character: We chose to use
three characters for this task – a simulated point robot, a bi-
manual mobile manipulator named HERB [15], and a human –
because we wanted to explore the difference between humans
and robots, and between complex and simple characters.

Trajectory: We hand designed (and recorded videos of)
trajectories ξP and ξL for each of the characters such that
predictability(ξP ) > predictability(ξL) according to (2), but
legibility(ξP ) < legibility(ξL) according to (9). Verifying for
a pair of trajectories that this is true requires assuming a
cost function C, and we chose trajectory length (or rather,
its quadratic counterpart) in the workspace as a natural rep-

Fig. 5. The end effector trace for the HERB predictable (gray) and legible
(orange) trajectories.

resentation of efficiency – penalize the robot from taking
unnecessarily long paths when the direct one is available. We
represent trajectories as vectors of waypoints, and set

Capprox =
∑

t

||ξ(t+ 1)− ξ(t)||2

While we expect this to be appropriate for the point robot
because of its simplicity, we only expect this function to
correlate with the real C people expect for the other characters.
We describe below several steps we took to eliminate potential
confounds arising from this and ensure that the effects we see
are actually due to the theoretical difference in the score.

With the HERB character, we controlled for effects of
timing, elbow location, hand aperture and finger motion by
fixing them across both trajectories. For the orientation of the
wrist, we chose to rotate the wrist according to a profile that
matches studies on natural human motion [26], [38]), during
which the wrist changes angle more quickly in the beginning
than it does at the end of the trajectory. Fig.5 plots the end
effector trace for the HERB trajectories: the gray one has a
larger predictability score (0.54 > 0.42), while the orange one
has a higher legibility score (0.67 > 0.63).

With the human character, we used a natural reach for the
predictable trajectory, and we used a reach that exaggerates
the hand position to the right for the legible trajectory (much
like with HERB or the point robot). We cropped the human’s
head from the videos to control for gaze effects.

3) Dependent Measures: Predictability: Predictable tra-
jectories match the observer’s expectation. To measure how
predictable a trajectory is, we showed subjects the character
in the initial configuration and asked them to imagine the
trajectory they expect the character will take to reach the goal.
We then showed them the video of the trajectory and asked
them to rate how much it matched the one they expected, on a
1-7 Likert scale. To ensure that they take the time to envision
a trajectory, we also asked them to draw what they imagined
on a two-dimensional representation of the scene before they
saw the video. We further asked them to draw the trajectory
they saw in the video as an additional comparison metric.

Legibility: Legible trajectories enable quick and confident
goal prediction. To measure how legible a trajectory is, we
showed subjects the video of the trajectory and told them to
stop the video as soon as they knew the goal of the character.
We recorded the time taken and the prediction.

4) Subject Allocation: We split the experiment into two
sub-experiments with different subjects: one about measuring
predictability, and the other about measuring legibility.

978-1-4673-3101-2/13/$31.00 © 2013 IEEE 305 HRI 2013 Proceedings
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Figure 2.3: Predictable trajectory (gray) and legible trajectory (orange) (3)

These characteristics are non-verbally communicated among people through sen-
sorimotor communication: it has been proved that a robot is able to understand
if a person that grasps an object is careful or not (7).

With the goal of having an efficient HRI experience, it is not sufficient for the
robot to understand verbal and non-verbal communication. In fact, even if the
robot could respect these characteristics, the interaction could fall and be un-
pleasant. To avoid this, the robot’s movement should be predictable and legible.
According to the formalization performed in (3), predictability is a characteristic
of movement that provides information on how similar the movement performed
by a robot is to what a person expects. Indeed this concept depends on personal
experience, which for example is different between children and adults.
On the other hand, legibility is referred to as the property of a robot movement to
be understandable: the person can predict in real-time the motion goal, without
waiting for the execution of the entire movement. Figure 2.3 shows two trajecto-
ries performed by the HERB robot (described in detail in (30)); from the figure
is visible the difference between the predictable trajectory (depicted in gray) and
the legible trajectory (orange).

As a last characteristic of the robot movement, it is worth mentioning the
Uncanny Valley theory. It is a common hypothesis in robotics, formulated by
Masahiro Mori (4), which relates the human likeness of a robot to the emotions
felt by a human being. The concept is illustrated in Figure 2.4 (still line), where
the x-axis and y-axis represent respectively the human likeness and the affinity
felt by the person. From the plot, it can be noted how the human’s affinity
increases as the human likeness increases. However, in the proximity of what
Mori called Uncanny Valley, the affinity felt by the human drastically decreases.
In this region, the robot fails to be similar enough to humans, and the person
feels unpleasant feelings.
According to Mori, if the robot moves then the Uncanny Valley is amplified
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2.3 Gestures

(dot line in the Figure) and the HRI quality is even worse. In conclusion, when
designing an HRI is important to take into account these considerations.

pinker as if it had just come out of
the bath.

One might say that the prosthetic
hand has achieved a degree of resem-
blance to the human form, perhaps
on par with false teeth. However, once
we realize that the hand that looked
real at first sight is actually artificial,
we experience an eerie sensation. For
example, we could be startled during a
handshake by its limp boneless grip
together with its texture and coldness.
When this happens, we lose our sense
of affinity, and the hand becomes
uncanny. In mathematical terms, this
can be represented by a negative value.
Therefore, in this case, the appearance
of the prosthetic hand is quite human-
like, but the level of affinity is negative,
thus placing the hand near the bottom
of the valley in Figure 1.

I don’t think that, on close inspec-
tion, a bunraku puppet appears similar
to a human being. Its realism in terms
of size, skin texture, and so on, does not
even reach that of a realistic prosthetic
hand. But when we enjoy a puppet
show in the theater, we are seated at a
certain distance from the stage. The
puppet’s absolute size is ignored, and
its total appearance, including hand
and eye movements, is close to that of a
human being. So, given our tendency
as an audience to become absorbed in
this form of art, we might feel a high
level of affinity for the puppet.

From the preceding discussion, the
readers should be able to understand the
concept of the uncanny valley. Now let
us consider in detail the relation between
the uncanny valley and movement.

The Effect of Movement
Movement is fundamental to ani-
mals—including human beings—and
thus to robots as well. Its presence
changes the shape of the uncanny val-
ley graph by amplifying the peaks and
valleys (Figure 2). For illustration,
when an industrial robot is switched
off, it is just a greasy machine. But
once the robot is programmed to
move its gripper like a human hand,
we start to feel a certain level of affin-
ity for it. (In this case, the velocity,
acceleration, and deceleration must

approximate human movement.)
Conversely, when a prosthetic hand
that is near the bottom of the uncanny
valley starts to move, our sensation of
eeriness intensifies.

Some readers may know that re-
cent technology has enabled prosthetic
hands to extend and contract their fin-
gers automatically. The best commer-
cially available model, shown in Figure
3, was developed by a manufacturer in
Vienna. To explain how it works, even
if a person’s forearm is missing, the
intention to move the fingers produces
a faint current in the arm muscles,

which can be detected by an electro-
myogram. When the prosthetic hand
detects the cur-
rent by means of
electrodes on the
skin’s surface, it
amplifies the sig-
nal to activate a
small motor that
moves its fingers.
As this myoelec-
tric hand makes
movements, it
could make healthy people feel uneasy.
If someone wearing the hand in a dark
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Figure 1. The graph depicts the uncanny valley, the proposed relation between the
human likeness of an entity, and the perceiver’s affinity for it. [Translators’ note: Bunraku
is a traditional Japanese form of musical puppet theater dating to the 17th century. The
puppets range in size but are typically a meter in height, dressed in elaborate costumes,
and controlled by three puppeteers obscured only by their black robes (see front cover).]
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Figure 2. The presence of movement steepens the slopes of the uncanny valley. The
arrow’s path represents the sudden death of a healthy person. [Translators’ note: Noh is
a traditional Japanese form of musical theater dating to the 14th century in which
actors commonly wear masks. The yase otoko mask bears the face of an emaciated
man and represents a ghost from hell. The okina mask represents an old man.]
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Figure 2.4: Uncanny Valley (4)

2.3 Gestures

The definition of gestures used in this scope is the one provided by Carf́ı et al.
(31): “Gestures are trajectories τ(ts, te) that humans intentionally perform to
affect the behavior of an intelligent system”.
This definition is focused on two aspects:

• the trajectory τ(ts, te), where ts is the start instant and te the end instant

• the willingness to perform a gesture

The trajectory is defined as a set of joint configurations, velocities and accelera-
tions which allows to describe the human body with skeleton models.
The second characteristic concerns the fact that the human operator wants to
communicate explicitly (in other words, he is willing to perform a gesture). As
described in (31), a gesture may be characterized by several attributes such as:

• temporal duration
• level of instruction
• context of execution
• body part affected
• spatial influence

Among these, the most interesting ones are the temporal duration and the level
of instruction. The first one allows distinguishing static gestures from dynamic
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2.3 Gestures

gestures. The word static is used to refer to movements in which the hand is
still, fixed to a given joint configuration q. On the contrary, a dynamic gesture is
characterized by the fact that the hand configuration changes over time. More-
over, as happens in (7), this kind of gestures are usually characterized by three
different temporal phases:

• a preliminary phase, in which the human operator brings the hand to a
given initial configuration

• a central phase, where the execution of the gesture is carried out

• a final phase, which allows to bring the hand back to the initial configuration
(or to bring it to another arbitrary configuration that may be useful for a
next gesture)

Level of instruction refers to the information that a person needs to properly
carry out a given gesture. According to Vuletic et al. (32), gestures can be
classified as:

• prescribed

• free-form gesture

The first category indicates all the gestures that are part of a predefined dic-
tionary. On one hand, these gestures have the drawback that the user has to
adapt himself to the fixed dictionary. This clearly reduces the quality of the HRI,
since the user cannot easily customize the interaction according to his habits.
Moreover, in order to adapt himself to the dictionary, he has to focus and learn
the available gestures, whose operation is more difficult with older people. On
the other hand, prescribed gestures have the advantage of allowing the user to
express symbolic meanings.
Free-form gestures have an opposite meaning with respect to the previous cate-
gory: the user does not need to learn a new vocabulary and the robot will directly
understand what gesture he or she is performing. As suggested by the authors of
the article, even though this kind of gesture seems to be more useful rather than
the previous one, they have the drawback of not allowing the user to communicate
symbolic meanings.

Keeping these considerations in mind, to carry out an efficient HRI it is nec-
essary that a proper analysis is carried out in the design stage.
The aim of such analysis is to understand whether prescribed gestures are more
suitable than free-form gestures (or the contrary), so that the system is devel-
oped focusing on one kind of gesture rather than the other. Moreover, in case
prescribed gestures are considered, a trade-off between the easiness of learning
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the dictionary and the number of possible gestures must be reached, so that the
mental stress of the user is minimized. In addition, the age of the target people
for whom the gesture system is developed may change the weights in the trade-off:
if the system is designed for young people, then the trade-off will mostly benefit
the complexity of the dictionary.

Besides the previous classification, gestures can also be divided according to
the effect they cause in the robot (31). This concept can be explained with the
following example: consider a simple gesture like the rotation of the wrist, which
is encoded by the robot as a non-verbal way to ask what is the current time. Now
consider another hand gesture, which involves two fingers (for instance the thumb
and the middle finger). Moving the fingers closer is interpreted by the robot as a
command to get closer to the user. On the contrary, if the user moves the fingers
away the robot will move away.
The first is an example of a discrete gesture: it is like a sample, which can only
be interpreted by the robot once it is entirely carried out. Analogously, the sec-
ond gesture is continuous: it is like a sequence of samples, in which at each time
instant the robot associate a meaning to the current movement.
From this example, it is clear that discrete gestures are easily associated with
prescribed gestures. Indeed, having a dictionary of movements allows to directly
and easily associate a meaning to every action. In this perspective, the design
stage previously described should also take into account the distinction between
discrete and continuous, and then chose properly depending on the application
considered.

Italian hand gestures represent a common way of communicating with our
body. These gestures, which are used daily by Italians and have a discrete rep-
utation throughout the world, are a form of explicit, culture-oriented form of
communication, characterized by a gesture-meaning pair that is well-defined and
shared among people. According to Poggi (14), Italian gestures are “coverbal” if
they are strictly related to dialogue and enforce its meaning, or “autonomous” if
they do not necessarily support the speech. Also, they can be described as “bio-
logical” or “cultural”. Biological gestures are closely related to certain situations,
in which a person reacts psychologically to an external event. For example, a ges-
ture like this may occur after a soccer player has scored a goal: for the moment
of sudden happiness, he shakes his hands to the sky. On the other hand, cultural
gestures are common gestures within a culture.
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2.4 Hand model

2.4 Hand model

In order to correctly understand how to recognize and categorize gestures, it is
useful to know how to represent the human hand, especially when the classifica-
tion is carried out through gloves, as in this study. In these cases, to recognize
every finger movement, it is necessary to understand the key points of the move-
ment so that the glove allows these points to be used as reference positions for
the data acquisition.
The hand is a complex structure composed by the following kind of tissues:

• bones
• muscles
• tendons
• soft tissues

The bones are 27, and can be divided in carpals, metacarpals and phalanges (33).
The muscles make the movement possible thanks to the tendons, which connect
muscles to bones. Soft tissues include the skin and the adipose tissue.

In the literature, there are different skeleton models that allow to represent
the human hand, and they differ in terms of model complexity. Usually, hand
models (like the one provided in (33)), identity five type of joints in the human
hand, that are named as:

• metacarpophalangeal (MCP)

• proximal Interphalangeal (PIP)

• interphalangeal (IP)

• distal interphalangeal (DIP)

• trapeziometacarpal (TM)

Another common aspect in hand models literature is to constraint the human
finger configurations. Doing so, the hand is more realistic to the real anatomy. In
fact, not all the finger configurations are possible, thus constraints are necessary
in the representation. A complete description of the hand constraints is carried
out in the model provided by Lee et al., where four types of constraints are taken
into account (34). As the authors suggest, the first constraint category regards
geometric characteristics like the limits on the angle and the movement type.
Then there are joint constraints on the interphalangeal and metacarpophalangeal
movements (flexion). As an example of interphalangeal constraints, the authors
refer to the difficulty to move separately the DIP and the PIP of the four fingers
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2.4 Hand model

(note that the thumb has a different structure). This difficulty is mathematically
modelled through the relation:

qDIP =
2

3
qPIP

Speaking about the constraints on the MCP joints, the author noticed that the
motion range is approximately 90 degrees for each finger, even though the range
is a bit larger for the ring and the pinky fingers.
In (34) the model is characterized by 27 degrees of freedoms (DOF). A simpler
kinematic structure is utilized in the gesture recognition carried out in (35), in
which the skeleton is composed by 20 joints. In (36) the structure is even simpler
and consists of only 23 DOF. This last structure is shown in Figure 2.5: the MCP
of each finger has two DOF; the other joints of the fingers have one DOF at each;
the joint at the carpus has 3 DOF. In addition, in Figure 2.6 is provided an x-ray
image of the left hand, which can be used by the reader to understand the real
joint positions.

TM

IP

DIP

PIP

MCP

Carpus

1 DOF

Fixed

2 DOF

MCP

Thumb

Index

Middle

Ring

Pinky

Figure 2.5: Kinematic structure of human hand (5)
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Figure 2.6: X-ray image of right human hand (5)

2.5 Sensor technologies

As we will discuss in Section 2.7, the objective of gesture recognition is to establish
to which class an input gesture belongs, analyzing, in probabilistic terms, how
similar the input is to each of the gestures recognizable by the classifier. In the
whole gesture recognition problem, the first operation that must be carried out
regards the data collection. To do so, it is essential to use sensors. A sensor is
a device that allows acquiring real-time information. In the context of gesture
recognition, many sensors are adopted and each of them brings its own advantages
and drawbacks. The most common devices used to acquire data are the following:

• marker
• single camera
• stereo camera
• depth sensor
• glove
• band

Markers are used in Motion Capture systems in order to reconstruct the 3D posi-
tion of the point they are attached to. A single camera is a device that allows to
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capture an image of the scene, while a stereo camera is a term used to refer to a
couple of cameras that are positioned at a given distance. Depth sensors consist
of a RGB camera, which captures colored images, and a depth sensor, that ac-
quires depth images. It is composed of two units: the infrared projector, which is
a laser, and an infrared camera. An example of a depth-image of 640×480 pixels
is shown in Figure 2.7: the distance of the camera from each object in the scene
is encoded with the gray color (darker gray pixels correspond to closer object),
while the black color is used to indicate that no depth information are available
for that specific pixel. Gloves and bands are devices that allow acquiring data
such as: linear accelerations, orientation, angular velocity and magnetic fields.
They rely on accelerometers, gyroscopes and magnetometers.
Among these devices, it is possible to make a distinction and categorize them
as image-based and non-image-based (11). Image-based (marker, depth sensor,
stereo camera, single camera) have a great advantage: the human operator does
not need to wear any type of additional hardware (apart from the marker case).
On the other hand, they bring some drawbacks: they involve a high computa-
tional complexity; they can have occlusion problems due to the anatomy of the
fingers, which causes a not satisfying estimation of the hand pose (36); their
performances may depend on environmental factors (like the lighting condition).
Besides, vision-based sensors may not be the most appropriate choice for those
who are particularly interested in protecting their privacy. On the contrary, non-
image-based devices (gloves and band) do not have the occlusion problem; they
principally rely on accelerometers, gyrometers and magnetometers, and allow to
efficiently reconstruct the hand movement. Nevertheless, the user has to wear a
specific hardware, which limits the simplicity of the interaction with the environ-
ment (36).
In Table 2.1 are provided in detail the most important advantages and drawbacks
of some of the sensors used in gesture recognition.

The Kinect depth camera was first presented in November 2010
as a new input device for the Xbox 360 gaming console.

The Kinect camera system features an infrared light projector
and an infrared camera for creating a depth image in addition to a
normal color image. This depth image allows a relatively easy
implementation of gesture control in contrast to color coded
images, since it significantly simplifies the segmentation of single
objects. The camera has a sampling rate of 30 frames per second
(fps). The view angle of the camera is 57 degrees horizontally and
43 degrees vertically. The camera can be connected to a computer
via a standard Universal Serial Bus (USB) connection.

2.2. Software

2.2.1. OsiriX plug-in

OsiriX is an open source PACS system [12]. OsiriX features a
DICOM viewer as well as a plug-in interface, which allows for
easy extension of the functionality of OsiriX. Our plug-in

translates depth images delivered by the Kinect camera into
control commands of the OsiriX image viewer. The plug-in was
written in Objective-C using XCode (Version 4.1, Apple Inc., USA),
the Libfreenect library [13] to access the Kinect depth images and
OpenCV [14] for image processing. The plug-in can be started
directly from OsiriX and gives a visual feedback on the hand
gesture detection in a live view window as displayed on the
computer monitor (see Fig. 1). The plug-in runs in real time.

2.3. Detection of finger gestures

Finger detection is performed on the cameras depth images.
The principle is explained in Fig. 2. In the first step, the object
closest to the camera is determined. Based on this information,
close objects are cut out (threshold segmentation and binariza-
tion) and separated (blob detection). The contour of each blob is
calculated and a polygon is calculated that approximates the
contour. In order to identify fingertips, all points of the polygon
(vertex) that are on the outside of the shape are determined. This
is done by calculating the convex hull, which means the smallest
surface that surrounds the object without being concave. All contour
vertexes that lie on the convex hull as well are considered to be
potential fingertips. Next, the angle of each polygon is calculated and
assigned to the corresponding vertex. The combination of finger/non
finger vertexes and according angles defines the signature of the
object. Signatures are then compared to a library of finger postures.
Finger postures are recorded over time and the algorithm looks for
motion patterns. Once a pattern is recognized, the current state of
the OsiriX viewer is altered accordingly. A flowchart displaying how
the algorithm works can be seen in Fig. 3.

2.4. Gesture commands

If a gesture is recognized, it is displayed in the live view
window. The possible gestures include control of the position,
magnification and window of the current OsiriX DICOM image as
well as alteration of the current position within the dataset. All
valid finger gestures are displayed in Fig. 4. Panning the image is
possible by presenting an open hand with the fingers and thumb
spread apart to the camera. Shifting the position of the hand in
plane results in panning of the image, with the image following
the direction of the hand shift. To zoom in or out, both hands form
a frame. By moving them away from each other, the image is
magnified, bringing the hands closer together zooms out. For

Fig. 1. Setup of the Kinect gesture control system in the autopsy suite. (a): Screen

displaying the current dataset and the live view window. (b): Live view window

displaying the processed image seen by the camera as well as the gesture

currently recognized. (c): Kinect camera. (d): Autopsy table.

Fig. 2. Hand gesture detection on depth images. (a): Original depth image.(b): Segmentation of objects closest to the camera by thresholding and binarization. (c): Blob

detection and extraction of contours (red). (d): Approximation of contour with polygons (green), angles between polygon edges and calculation of convex hull (blue).

Polygon points (vertexes) that lie on the outside (on the convex hull) are considered to be fingertips. (e): Counterclockwise creation of signature by determining whether a

vertex lies on the convex hull or not (green). Additionally the angles are determined for each vertex. (f): Signature and angles are compared to predefined patterns.

The information about a detected pattern is recorded over time and then used to identify the gesture, altering the image viewer accordingly.

L.C. Ebert et al. / Journal of Forensic Radiology and Imaging 1 (2013) 10–14 11

Figure 2.7: Depth image of a person performing a gesture with the hand (6)
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Table 2.1: Advantages and drawbacks of different sensors (11)

Sensor Advantages Disadvantages

Marker Low computational workload Markers on user body
Single
camera

Easy setup Low robustness

Stereo
camera

Robust Calibration difficulties

Microsoft
Kinect

Fast emerging Cannot be used for recognition
over 2 m

Glove Fast response, precise tracking Cumbersome device with a load
of cables

Band
sensor

Fast response, large sensing
area

Band needs to contact with hu-
man body

2.6 Classification methods

The classification methods can be grouped into two categories: those based on
computer vision and those based on time-dependent sequences of accelerations.
Template matching is a technique that works on visual features (e.g., skin color
(11)) and belongs in the computer vision category. Usually, these algorithms
perform the classification considering the Euclidean distance between the visual
features of the input gesture and those of the template: if the distance is low
enough then the gesture is considered classified as the template considered (37).
The second classification category includes different learning algorithms such as:
Dynamic Time Warping (DTW), Support Vector Machine (SVM), Feedforward
Neural Network (FNN) Long Short-Term Recurrent Neural Network (LSTM-
RNN).
DTW is an algorithm that measures how much two time series are alike. Through
a cost function, it initially computes a cost matrix and then finds as the optimal
warping path the one with the smaller cost (38).

SVM is a linear binary classifier that split into two classes the data contained
in a given data set. The split is carried out with a hyperplane that is computed
by maximizing the margin, that is the distance between the line separating the
two classes in the data set and the data set entry most close to such line (39).
The algorithm itself will not be very useful in HRI unless the gestures available
are only two. Kernels can be used in order to allow the SVM classifier to classify
more than two gestures.
FNN is a network whose elementary component is the neuron. The structure is
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2.6 Classification methods

always characterized by at least three layers: the input layer, the output layer
and the hidden layer in the middle (more than one hidden layer is permitted).
Inside FNN, every neuron of a layer is connected to every neuron of the successive
layer, and the connection is characterized by the synaptic weight. The values of
the synaptic weights are computed during the training of the model through the
back-propagation algorithm, which iteratively adjusts the weight values so that a
given cost function is minimized. The algorithm is applied in the training phase,
where the network takes as input a training set. After training, the network will
have a certain generalization capability that will allow it to classify new unknown
inputs. During the training, care must be taken to the overfitting problem, a
situation where the generalization capability of the NN is lost. (40)

Recurrent Neural Network (RNN) is an architecture that is particularly useful
when the data to be classified consists of a sequence of elements, as it happens
with the speech. In RNN, the hidden layers contain information about the past
of the current sequence in input, and this allows to model the time dependencies
and predict the next input (41). The potential issue of RNNs is that they have
difficulties modeling long temporal dependencies. For this reason, Long Short-
Term Memory (LSTM) is considered. This kind of architecture can memorize
longer temporal information through hidden units called memory cells (41). In
Table 2.2 are summed up the most important advantages and drawbacks of the
proposed classification algorithms.

Table 2.2: Advantages and drawbacks of classification approaches

Approach Advantages Drawbacks

DTW temporal variability complexity is O(n2), with n tem-
plates in the dictionary

SVM high generalization capability,
also with a small data set

Number of support vectors, bi-
nary classification method

HMM allow to model temporal vari-
able time series (42)

complexity is O(n2), with n num-
ber of states (42)

NN user dependent, user indepen-
dent, fast prediction (8)

training phase

LSTM-
RNN

very efficient for sequential
data

retrain if the dictionary changes,
high number of weights (43)
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2.7 Gesture recognition

2.7 Gesture recognition

According to Carf́ı et al. (10), gesture recognition involves the following steps:

1. Perception
2. Detection
3. Classification

The first sub-problem that occurs when dealing with gesture recognition is re-
ferred to as perception, where the goal is to acquire real-time data, which will
then be used in the following phases. The data acquisition is carried out through
sensors; as shown previously in Section 2.5, there are various technologies that
are usually divided into image-based and non-image-based. In general, no sensor
is better than the others: indeed the choice will be determinant for the imple-
mentation of the algorithm, since different sensors involve different features (i.e.,
accelerometers return accelerations, RGB cameras return colored images). The
choice depends on the application for which that particular sensor will be more
appropriate than the others.
Once the perception is performed, the problem is to extrapolate meaningful data
from the one obtained by the sensor (detection). This problem occurs because
it is not true, in general, that each recorded data corresponds to a time instant
where a gesture is being performed. Consequently, it is necessary to identify,
within a data sequence, where the gesture starts and ends.
Finally, the classification problem consists of establishing which gesture corre-
sponds to the one whose data has been analyzed. As will be shown, there are
different ways to solve the problem.

2.7.1 Perception

As explained before, the problem of perception refers to the acquisition of new
data. Nowadays, there are multiple technologies that allow collecting data.
Three-axis accelerometers make it possible to measure the linear accelerations
along the x, y, z coordinates of a body to which the sensor is attached.
The advantages of accelerometers are essentially two: they are usually built-in
smartphones and smartwatches and are accessible to everyone interested (44);
they are quite cheap, allowing who is curious to develop new solutions, like gloves
with built-in accelerometers (36).

Among image-based sensors, many researchers have focused their attention on
RGB-D cameras like the Microsoft Kinetic (45). As explained before, this kind
of sensor allows obtaining a color image and a depth image, with the advantage
of not having problems due to lighting sensitivity or incorrect calibration, typical
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2.7 Gesture recognition

of RGB camera. These sensors have been used to build frameworks that allow to
recognize and interpret hand gestures of an operator (46), (47).

Elbert et al. have utilized a Kinect camera in a medical context, where the
surgeon is able to control images relevant for the surgery without any classical
input device (6). They implemented a kinect-based gesture recognition framework
that allows the surgeon to interact with the medical images only with his or
her gestures, with the advantage of not contaminating the patient during the
operation.

Once data are acquired, whatever the sensor utilized for the perception, it is a
common practice to pre-process the measured data in order to reduce complexity,
which is due to the high number of input data, and noise introduced in the
measurement.

Liu et al. proposed an efficient pre-processing algorithm that reduces both
the noise introduced by the IMU and the computational complexity (9). Their
algorithm is based on the quantization of raw accelerations, which works as fol-
lows: at first, the data in input is compressed through an averaging window of 50
ms (which is updated every 30 ms); then, a non-linear quantization is carried out,
by giving more importance to the accelerations in the range [−g, +g], where g is
the accelerations of gravity. According to the authors, the choice of this specific
interval is based on statistical observations of the accelerations values obtained
experimentally: generally, such values are inside the well-defined range. For this
reason, it is given more importance to the input data within the range. The out-
put of this process is a shorter time series that, thanks to quantization, contains
33 possible values, as shown in Table 2.3.

Table 2.3: Acceleration quantization (9)

Acceleration data (a) Converted value

a > 2g 16
g < a < 2g [11, 15]
0 < a < g [1, 10]
a = 0 0
−g < a < 0 [−1, −10]
−2g < a < −g [−11, −15]
a < −2g −16

In (48) the pre-processing algorithm consists of two steps: in the first one,
a complementary filter is applied to the linear accelerations in input (49); the
goal of the filter is to obtain accelerations that are only due to the hand motion
(gravity is removed). In the second step, the filtered components of the linear
accelerations are used to calculate the Euclidean norm.
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Xie et al. in the pre-processing phase of their gesture recognition framework
(8) use a different strategy with respect to the previous ones: in order to limit
as much as possible the noise introduced by unwanted hand movements, the
authors implemented a button strategy which consists of pressing a button just
before performing the motion and releasing it right after its complete execution.
Another characteristic of their pre-processing algorithm consist in removing the
gravity acceleration from the input data a, obtaining the acceleration as that
is only due to the hand motion. This is carried out by removing the mean
acceleration value from each row data.
In accordance with the literature, the authors consider a filtering in order to
remove noise, which is most evident in high frequencies. The filter considered
is the symmetric Moving Average, a low pass filter that allows to cut-off high
frequencies from as[n], returning the filtered signal a[n]. It is defined as:

a[n] =
1

2M + 1

M∑

m=−M

as[n+m]

where M = 5 is based on empirical tests and comports a window of size of
dimension 2M + 1 = 11.

In (50), Bruno et al. filter the linear acceleration coming from the three-axis
accelerometer with a Median filter (51), a non-linear filter again used to remove
the noise in high frequencies. They also remove the gravity acceleration ag from
the row data a, by applying a low pass filter in order to isolate ag, and then
obtaining the acceleration due only to the hand movement as as = a− ag.

2.7.2 Detection

As shown previously there are various sensors that allow to collect data, and
they are mainly divided into image-based and non-image-based. The choice of
the sensor will have an impact on the gesture recognition algorithm, since the
two categories provide different data. However, the goal of the detection problem
will be the same: to extract some meaningful features and prepare them for the
gesture classification.
In computer vision, there are different ways to select some specific features like
motion, color and geometric shape (52). The methods that allow obtaining such
features are referred to as feature-extractors. Hasanuzzaman et al. developed a
gesture recognition method based on Template Matching and skin-like regions
(53). The features are extracted through a color segmentation algorithm that
takes as input images expressed through the YIQ color space, where Y-channel
is used to represent the illuminance and I, Q for the chrominance. Assuming
that the only visible skin is in the hand, the gesture detection is carried out by
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applying a threshold to the Y-channel, the one that allows to identify the skin
from the background.

The detection problem arises also in the case of non-image-based sensor, since
the raw data coming from the accelerometer does not give any additional infor-
mation about the type of gesture the data refers to. In this context, it is very
important to understand the time instants where a gesture starts and ends, and
this is possible thanks to segmentation techniques.
If a person performs two given gestures, it is very likely that some random move-
ments will occur between them. As consequence, the algorithm must be able to
understand that two different gestures have been performed and what is between
them does not correspond to any meaningful gesture. In the literature, different
approaches that take into account this problem. They can be differentiated be-
cause some of them rely on manual segmentation, while others are automatically
performed by the algorithm itself.

One example of manual segmentation can be seen in (48), where the procedure
works as follows: right before the actor starts performing a gesture, an external
operator presses a button and records that time instant ts; when the gesture is
entirely performed, the operator can release the button and the final time instant
tf will be recorded. A similar approach is considered in (54), with the difference
that there is no external operator available to press and release the button. This
task has to be carried out by the actor himself.
As pointed out by Luzhnica et al. the main drawback of manual segmentation
approach regards the arbitrary of the process: the operator responsible to press
the button, as careful as he may be, will never be able to capture the exact initial
and final time instants of the gesture (48). This is the reason it is better in general
to consider automatic segmentation algorithm.

There are various examples in the research community that involve automatic
segmentation. One of them is in (7), where Lastrico et al. have proved that, when
a person has to grasp an object that may or may not require carefulness, the hand
velocity profile is always similar to the one provided in Figure 2.8. From such
figure, it is possible to identify three segmented regions that are typical of this
kind of movement. Note that the hand velocity profiles plotted in the figure have
been computed in two different ways: one involving a Motion Capture system
and another with the Optical Flow.

Another useful automatic segmentation algorithm is presented in (44), where
accelerations are measured from an IMU sensor belonging to a smartphone. At
first, the algorithm compute the distance D between each component of the cur-
rent accelerations (time instant k) and the previous one (time instant k − 1), as
stated below:

D =
√

(xk − xk−1)2 + (yk − yk−1)2 + (zk − zk−1)2
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6 Lastrico et al.

and on the smartwatch in correspondence of the radial styloid (see the markers
circled in red in Fig. 2 for reference). Two different cubic interpolations, in-
paintn [5] and interp1 of MATLAB ver. R2019b, have been used to reconstruct
the data that are missing because of the occlusions, respectively for the initial
part of the trials and the central one. The data was filtered with a second order
low pass Butterworth filter with a cutoff frequency of 10 Hz. Some trials have
been excluded from the data set because of inconsistencies in the segmentation
among the acquired sensors or because of errors of the subjects into pressing the
key at the right moment, i.e. when their right hand was laying on the table in
the resting position. Overall only 1.25% of the total acquired trials have been
removed. Since our hypothesis is that it is possible to distinguish the features of
the object that is being transported, it was necessary to isolate the transporta-
tion movement in every trial. To do so we took advantage of the experiment
design. Indeed each trial presented three clearly identifiable phases: a reaching
action, from the resting pose to the position occupied by the glass (either on the
shelf or on the scale), a transportation movement finally the departing (see
Fig. 3).

Fig. (3) Example of the velocity patterns from motion capture (in blue) and
optical flow data (in red). The peaks characterizing the three phases of the trial
(reaching, transportation and departing) are visible

Our segmentation assumed that the start and end of the transportation phase
is associated with a peak in the norm velocity of the hand. Therefore, the seg-
mentation was performed by placing a threshold of 5% on the peak of the norm
of the velocity, after filtering it with a fourth order filter with a cutoff frequency
of 5 Hz. The resulting data were then down-sampled to obtain the same frame
rate as the camera of the robot.

Camera data and optical flow extraction As motion descriptor, from the saved
raw images of the robot camera (see Fig. 4 for an example) we chose to compute
the Optical Flow (OF), following an approach already tested [16]. In this method,
the optical flow is computed for every time instant using a dense approach [4],
which estimates the apparent motion vector for each pixel of the image. The
magnitude of the optical flow is thresholded to consider only those parts of

Figure 2.8: Reaching, Transportation and Departing phases of gesture segmen-
tation (7)

then it checks if D is within a given range (chosen empirically). If D > 0.3 then
the linear acceleration (xk, yk, zk) is associated to the start of a gesture (ts = tk);
if D < 0.1 and its previous values were bigger than 0.3 then (xk, yk, zk) is the
accelerations corresponding to the final time instant (tf = tk).
As the authors precise, the algorithm is efficient if the gesture has a temporal du-
ration within the interval [0.6, 2] seconds. For this reason, the algorithm presents
some lack of generalization capability, since in an online non-constrained scenario
it may be the case that a gesture requires more than 2 seconds.

Algorithm 1: segmentation algorithm (44)

Result: ts, tf
while input data (xk, yk, zk) do

compute Dk;
if Dk > 0.3 then

ts = tk;
end
if Dk < 0.1 and Dk−1 > 0.3 then

tf = tk;
else

idle gesture
end

end

A similar approach is carried out in (8).
Given a[n] = (ax[n], ay[n], az[n]), at first is computed the Euclidean distance
between the current acceleration a[n] and the previous one a[n−1], where a[n] =
{a[1], a[2], · · ·, a[n]}. Then a threshold (0, 24525) chosen empirically is applied
to select the initial and final time instants ts, tf . This algorithm holds since
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Fig. 6. Gesture segmentation. The blue solid, green dashed, and red dotted lines in the top half of each part are accelerations on x-, y-, and z-axis, respectively.
(a) Gesture ‘right’. (b) Gesture ‘6’. (c) Gesture ‘14’. (d) Gesture ‘16’.

the peak is chosen as the segmentation point. The handling of
the two special cases makes the segmentation algorithm have
good anti-noise ability.

D. Feature Extraction

The key of gesture recognition is to extract effective features
which reflect the motion characteristics of different gestures.
Since a complex gesture is segmented into several basic ges-
tures, here we just extract the features of basic gestures. In this
study, 25 features are extracted from the segmented hand
motion interval, including M AVx , M AVy , RM AV , |�M AV |,
ALx , ARx , AL y , ARy , SLx , S Rx , SL y , S Ry , AJx , AJy ,
S AJx , S AJy , R AJ , S R A J , �AL, �AR, |�AL|, |�AR|,
SD AL, SD AR, and r . Note that the subscripts x and y
indicate the features are extracted from the accelerations
on x- and y-axis, respectively. The detailed definitions are as
follows.

1) Mean absolute value

M AV = 1

W

W∑

i=1

|a[i ]| (3)

where W is the length of the segmented motion interval.

2) The ratio of M AVx to M AVy

RM AV = M AVx

M AVy
(4)

3) The absolute value of the difference between
M AVx and M AVy

|�M AV | = |M AVx − M AVy | (5)

4) The acceleration value of the maximum absolute accel-
eration point located on the left of the peak

AL = a[arg max
i

|a[i ]|] (6)

where i = 1, 2, · · · , T , and T is the sampling time of the
peak. Similarly, the acceleration value of the maximum
absolute acceleration point located on the right of the
peak is AR, and i = T + 1, T + 2, · · · , W .

5) Setting a threshold

T H = C
1

W

W∑

i=1

√
ax [i ]2 + ay[i ]2

we get the sign of the maximum absolute acceleration
point located on the left of the peak

SL = sgn(p) (7)
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Figure 2.9: Euclidean distance evolution (8)

the authors made the assumption that the Euclidean distance is higher than the
threshold only in case of meaningful gestures. In Figure (8) it is shown a graphical
interpretation of the Euclidean distance evolution represented in the y-axis: the
first square symbol highlights the time instant in which the gesture starts its
execution; the red circle in the middle is in correspondence of the peak, and the
final red triangle records the final time instant.

2.7.3 Classification

Gesture classification is a problem that arises when the goal is to understand
the movement performed by a person. As seen before, it is typically preceded
by signal pre-processing and gesture segmentation. Different techniques allow to
solve the problem, by correctly recognizing and categorizing every gesture per-
formed by an actor. These techniques involve models that may work on features
directly extracted from the input data (both image-based and accelerometer-base
method). From this it is evident that the first step in the gesture classification
consists of the model building. As pointed out in (31), this phase does not follow
a standard procedure. Usually, models work on some features extracted from the
input, as it happens in (55) where the SVM model considers fast Fourier trans-
form features (56), while the one in (57) considers Haar coefficients (58).
A common step in the model building consists in the dictionary definition. In
FNN and LSTM-RNN this definition determines the training phase, where the
classifier learns how to represent the model (generalization capability). Typically
this is a long procedure (59) with a high computational time. On the other hand,
in DTW algorithms the training phase is absent since they require only one ges-
ture for each element they want to represent in the dictionary (9).
When building a model it is important to keep into account how the gesture
classification will be used. If the system is designed for an individual, then it
will be enough to develop a user-dependent algorithm. If more than one person
is considered then the algorithm should be user-independent. The latter denotes
algorithms where the accuracy is high even though the online classification is
performed by a person that did not contribute to the model building.
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In (9) Liu et al. implemented a DTW algorithm that performs classifications
by minimizing the cost function between the input and each gesture in the dic-
tionary. The algorithm is very efficient, as the high accuracy (98.6%) points out.
The cost function is the Euclidean distance D between input G and dictionary
template Tj computed for each acceleration x as:

D =
√

(G[x]− Tj[x])2 + (G[y]− Tj[y])2 + (G[z]− Tj[z]2)

The dictionary is composed of 8 simple gestures and is shown in Figure 2.10.
The proposed algorithm works as follows: once a gesture G is detected, it is com-
puted the Euclidean distance between G and Tj (j ∈ [1, 8]). At the end input G

is classified as Tj if they present the highest similarity (thus smaller distance D).
Figure 2.11 shows a graphical representation of the algorithm, focusing on three
possible gesture distances.
As pointed out by the authors themselves, high accuracy is one of the most im-
portant advantages and points out a confident algorithm. On the other hand, the
computational complexity grows exponentially as the dimension of the dictionary
increases. This causes slower classifications, which may potentially compromise
the quality of the HRI. In addition, due to the way the dictionary is updated, the
classifications are user-dependent (57). Starting from the same gesture dictionary
it is possible to increase the classification accuracy up to 99%, if a SVM classifier
with a Gaussian kernel is implemented (57).

662 J. Liu et al. / Pervasive and Mobile Computing 5 (2009) 657–675

Fig. 3. Wii remote based prototype of uWave: the Wii remote sends the acceleration data through Bluetooth to the laptop that runs the recognition
algorithm.

1 2 3 4

5 6 7 8

Fig. 4. Gesture vocabulary adopted from [6]. The dot denotes the start and the arrow the end.

uWave gives out recognition result without perceptible delay in our experiments based on PCs. We measured the speed
of uWave implemented in C on multiple platforms. On a Lenovo T60 with 1.6 GHz Core 2 Duo, it takes less than 2 ms for a
template library of eight gestures. On a T-MobileMDA Pocket PCwithWindowsMobile 5.0 and 195MHz TI OMAP processor,
it takes about 4 ms for the same vocabulary. Such latencies are too short to be perceptible to human users. We also tested
uWave on an extremely simple 16-bit microcontroller in the Rice Orbit sensor [33], TI MSP430LF1611. The delay is about
300ms.While this may be perceptible to the user, it is still much shorter than the time a gesture usually takes so that should
not impair user experience.

5. Evaluation

We next present our evaluation of uWave for a vocabulary of predefined gestures based on the Wii remote prototype.

5.1. Gesture vocabulary and database collection

We employ a set of eight simple gestures identified by a VTT research study [4] as preferred by users for interaction with
home appliances. The work also provided a comprehensive evaluation of HMM-based methods so that a comparison with
uWave is possible. Fig. 4 shows these gestures as the paths of hand movement.
We collect gestures corresponding to the VTT vocabulary from eight participants with the Wii remote-based prototype.

Two of them are undergraduates and others are graduate students; all but one is male. They are in 20s or early 30s, right
handed.
The gesture database is collected via the following procedure. For a participant, gestures are collected from seven days

within a period of about threeweeks. On each day, the participant holds theWii remote in hand and repeats each of the eight
gestures in the VTT vocabulary ten times. The participants are free to hold theWii remote in anyway theywant; we only ask
them to keep it as consistent as possible. The database consists of 4480 gestures in total and 560 for each participant. While
our participants are not demographically representative, this database provides us a statistically significant benchmark for
evaluating the recognition accuracy. We have made the database open source and it can be downloaded from [36].
It is important to note that the dataset used in [4] consists of 30 samples for each gesture collected from a single user. All

of the 30 samples for the same gesture were collected on the same day (the entire dataset of eight gestures were collected
over two days). As we will highlight in this work, users exhibit high variations in the same gesture over the time. Samples
for the same gesture from the same day cannot capture this and may lead to overly optimistic recognition results.

5.2. Recognition without adaptation

We first report recognition results for uWave without template adaptation.

Figure 2.10: Gesture dictionary (9)

In (8), Xie et al. developed a gesture recognition system based on a device
directly fabricated by the authors themselves. As usual, the device contains a
three-axis accelerometer that allows to acquire real-time linear accelerations. The
classifier used is a FNN, which consists of one input layer, one hidden layer and one
output layer. The dictionary considered by the authors is composed of eight basic
gestures and sixteen complex gestures and is represented in Figure 2.12. Note
that the complex gestures are obtained as a combination of the simpler ones. On
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Figure 2.11: Graphical DTW algorithm (9)
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Figure 2.12: Gesture dictionary: basic gestures (left) and complex gestures (right)
(8)

the assumption that two consecutive gestures are always at the minimum distance
of 0.3 seconds, the authors tested the system accuracy for both user-dependent
and user-independent cases. In the first case, the overall accuracy is 99.88% for
both simple and complex gestures; in the last case, the accuracy goes from 98.88%
(simple gestures) to 98% (complex gestures).

One example of continuous gesture classification carried out through RNN is
developed in (10), where the network takes as input three-axis linear accelera-
tions coming from an IMU sensor in the wrist. The input is then processed by the
LSTM hidden layer, and finally a softmax output layer returns the probabilities
associated with the input gesture. This architecture allows to continuously clas-
sify inputs with a dictionary of six predefined gestures (Figure 2.13). Of course
the RNN module can classify input gestures only after the training phase, where
gestures (that compose the dictionary) are performed multiple times by different
people and then are fed to the classifier. In this specific case, a training set of
540 samples was considered.
During online classification, the accelerations of gesture G are given as input to
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Figure 2.13: Gesture dictionary (10)

the classifier, which returns the probability of G being classified as one of the
gestures in the dictionary Tj.
In the testing phase, the authors obtained an overall accuracy of 99%, proving
that in this context LSTM-RNN is a reliable probabilistic classifier. However,
they also evidenced that such classifier must be retrained every time a new ges-
ture is added into the dictionary. As a consequence, this limits the possibilities
of the HRI, since training the classifier is a long and complex operation (59) that
limits the generalization capability and the user customization.

Table 2.4: Summary of gesture classification approaches

Approach Used
in

user inde-
pendent

user de-
pendent

gestures in
dictionary

Accuracy
(%)

DTW (9) no yes 8 98.6
SVM (57) yes yes 8 99
FNN (8) yes yes 25 98
LSTM-
RNN

(31) yes yes 6 99

The provided algorithms are summed up in Table 2.2, where particular im-
portance is given to characteristics such as user-dependency, user-independency,
number of gestures in the dictionary and accuracy of the online classification. All
models present a high accuracy, thus the gestures will be correctly classified most
of the time. Indeed every model works with its own assumptions; for example, the
choice of the dictionary will be determinant in the whole algorithm performances,
since it has consequences on the model-building and determines characteristics
like time delay and computational complexity.
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Apart from DTW, all the classifiers are user-independent and allow to recognize
gestures performed by other people than the ones needed to build the dictionary.
This is particularly evident in FNN and LSTM-RNN methods as a consequence
of the training phase. Even though this is a step that requires time, it allows the
system to be user-independent because the dictionary is composed of gestures
performed by different people.
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Chapter 3

Experiment

In this section, we review the main aspects of the experiment, such as the de-
scription of the experimental protocol and the description of the Italian gestures
considered. Furthermore, we will provide details about the custom-made inertial
glove, as well as the criticalities introduced by it.

3.1 Inertial glove

Figure 3.1: Custom-made inertial glove

Figure 3.1 shows the custom made inertial glove from both sides. As you can
see, the glove has two Inertial Measurement Units (IMUs) for each finger. In
the thumb, they are close to the metacarpal and intermediate phalanges. In all
the others, the IMUs are always put on the proximal and intermediate phalanges.
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3.1 Inertial glove

Figure 3.2: Positioning of IMUs in the hand phalanges

Moreover, an additional IMU is placed on the back of the hand (on the metacarpal
bones). To get a better idea of where the IMUs are located, the reader can refer
to Figure 3.2.

The acquisition of inertial data is carried out with the InvenSense MPU-9250,
a nine-axes (gyro + accelerometer + compass) MEMS Motion Processing Unit,
which allows to record the linear acceleration, angular velocity and orientation of
the body where it is attached to. The MPU-9250 provides a user-programmable
gyro full-scale range of ±250, ±500, ±1000, ±2000 deg / sec (dps) and a user-
programmable accelerometer full-scale range of ±2g, ±4g, ±8g, ±16g, where g
is the gravity acceleration. In total, the glove has 11 MPU-9250, located on the
phalanges as described above.
The processing of inertial data is performed by the Esp32 located on the back of
the hand. It is a microcontroller that interfaces with the MPUs to receive the
inertial data and then transmits such data to a storage computer. The transmis-
sion is carried out through the Wi-Fi module integrated in the Esp32. Details on
how it works will be provided in the following chapters.

Each IMU records ten time series with a frequency of 28 Hz: the triaxial linear
accelerations, the triaxial angular velocities and the four orientations expressed
as unit quaternions. Having 11 IMUs, we can collect a total of (i) 11 · 3 linear
acceleration components, (ii) 11 · 3 angular velocity components, (iii) 11 · 4 orien-
tation components. Because every phalanx generates different data, each of the
110 features is associated with the name of the phalanx to which it belongs. This
leads to the 110 features, all different from each other, described in Table 5.1.
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Table 3.1: Dataset features

Base ax ay az ωx ωy ωz θx θy θz θw
Thumb proximal ax ay az ωx ωy ωz θx θy θz θw
Thumb intermediate ax ay az ωx ωy ωz θx θy θz θw
Index proximal ax ay az ωx ωy ωz θx θy θz θw
Index intermediate ax ay az ωx ωy ωz θx θy θz θw
Middle proximal ax ay az ωx ωy ωz θx θy θz θw
Middle intermediate ax ay az ωx ωy ωz θx θy θz θw
Ring proximal ax ay az ωx ωy ωz θx θy θz θw
Ring intermediate ax ay az ωx ωy ωz θx θy θz θw
Pinkie proximal ax ay az ωx ωy ωz θx θy θz θw
Pinkie intermediate ax ay az ωx ωy ωz θx θy θz θw

The table groups each acceleration a, angular velocity ω, orientation θ
components according to the phalanx (on the left) it belongs to, i.e., base,

proximal, intermediate.

3.2 Gestures dictionary

In this study, we consider twelve of the most popular Italian hand gestures, as
shown in Figure 3.3 along with the gesture ID. Note that the names of the classes
are omitted for simplicity, but can be observed in the video at the following link
1, where we show how to perform the gestures. The images in Figure 3.3 are the
same used during the experiments. As stated in the literature, each of them has
a specific social meaning (12) - (15), well-encoded in the Italian culture:

• Let’s go away, a gesture to be used when one wants to communicate the
intention to leave a place or a situation; it may express one’s wishes, be a
request to a friend or an unpleasant invitation to an acquaintance.

• A drink, gesture that indicates to those present that the person making the
gesture is thirsty and would like to drink.

• Very good, used to describe to others that what you are eating, or have
eaten, is to your taste; it is often used talking with children.

• Bye, a very common gesture, used to greet someone.

• What do you want, a very popular Italian hand gesture; literally, it means
“What are you doing”; however, it may have an ironic reading, i.e., “What

1Web: https://youtu.be/PFiZEmKKo-Y
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3.2 Gestures dictionary

are you doing?! Don’t do that!”; depending on the circumstances and the
degree of impatience expressed, the hand may be held still or be shaken
more or less violently up and down.

• What a bore, a lesser known gesture used to express boredom and tiredness
with something or someone; it usually has a negative connotation.

• It’s not possible, gesture that means “nothing to do” and expresses the im-
possibility of accomplishing an objective and/or carrying out an operation.

• Fear, a gesture very similar to “What do you want”, both in terms of the
hand movements and the literal/ironic interpretations; the literal meaning
indicates that the subject is in a state of fear; the ironic interpretation is
used to laugh at someone’s unwarranted fear.

• Silence, a gesture used to explicitly invite someone to be quieter; it usually
has a negative connotation.

• Come here, gesture indicating to the person you are interacting with to
come closer.

• Quotation marks, a gesture indicating to other people that what the subject
is saying is a quotation, from which they takes distance; it can also be used
in sarcastic circumstances.

• Victory, a gesture used in sporting activities to express euphoria at a suc-
cess.

Below, Table 3.2 provides a concise description of how to perform each of the
classes of gestures considered. In addition, the table presents each gesture name
in both Italian and English, and an ID column.
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Table 3.2: Gesture dictionary description (12) - (13) - (14) - (15)

ID English Italian Descprition

0 Let’s go away Andiamo
via

The palm is turned inwards, the other fin-
gers are flattened and the hand is waved
up and down several times

1 A drink Bere The fingers are curved, like the shape of a
glass, while the thumb is outstretched and
suggests the flow of a liquid

2 Very good Che buono The index is extended and touches the
cheek, the other fingers are closed and the
hand rotates on itself

3 Bye Ciao The palm, with extended fingers, swings
between left and right

4 What do you
want

Cosa vuoi The tips of the fingers are brought sharply
together to form an upward-pointing cone

5 What a bore Noioso The hand, with outstretched fingers, beats
repeatedly at the stomach level

6 It’s not possi-
ble

Non possi-
bile

The hand rotates around the index fin-
ger, keeping it extended together with the
thumb, while the other fingers are closed

7 Fear Paura The fingertips open and close quickly and
repeatedly

8 Silence Silenzio The index finger is laid across the lips, as
if to keep them close

9 Come here Vieni qua With the palm facing upwards, the index
fingers stretches and closes repeatedly

10 Quotation
marks

Virgolette The index and middle fingers move up and
down in parallel, with both hands raised
and palms forward

11 Victory Vittoria The hand is raised with extended index
and middle fingers
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3.3 Analytic gesture definition

Figure 3.3: Gestures in the dictionary along with IDs

3.3 Analytic gesture definition

Each Italian gesture can be described as a time-series evolution of 110 unique
features. The length of the time-series, i.e., the number of samples, is generally
different for every gesture, since it depends on the temporal duration employed
by the participant to carry out such gesture.
As the IMUs have the same data acquisition frequency (that is 28 Hz), a given
example is characterized by a fixed number of samples, equal for every feature.
The dimensionality of one single gesture in the dataset is:

G = [m,n]

with n = 110 the number of features and m the number of samples. Hence, the
dimensionality of the dataset is:

G = [k ·m,n]

where k is the total number of examples carried out by all the participants and
m is the number of samples. Figure 3.4 provides the time-series evolution of the
features measured on the index intermediate phalanx, during the “What do you
want” hand gesture.
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3.4 Room description

Figure 3.4: Index intermediate phalanx profiles of “What do you want” gesture

3.4 Room description

The room contains three key elements: a desk, where the participant is asked to
put their hands on, a chair, which allows them to sit comfortably in front of the
desk and iCub, a humanoid robot that guides the participant during the data
collection. The position of the chair is adjusted to ensure that the angle between
the arm and forearm is approximately 90 degrees. Note that the participant can
put their right-hand in every area of the desk.
The human operator is not part of the scene, as a black veil completely separates
them from the data collection station, and makes them invisible to the partici-
pant’s eyes.
A monitor is placed on the desk, on the right of the participant. It is intended for
a visualization task, later discussed. On the other side of the desk, in addition
to iCub, there is also a webcam that records the scene. The reader may refer to
Figure 3.5 to have a better idea of the key elements in the room.
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3.5 Experimental protocol

Figure 3.5: Room description

3.5 Experimental protocol

The volunteer enters the room accompanied by the operator responsible for the
data collection. At first, they ask the volunteer’s personal information (name,
surname, date of birth, dominant hand); then they briefly describe the key ele-
ments in the room and explain to the participant that they will have to perform
twelve gestures selected from the Italian culture. In addition, the operator ex-
plains that the management of the experiment will be totally entrusted to iCub,
which guides the participant in the gesture collection. More specifically, due to
the strict correlation between the Italian hand gestures and their social meaning,
iCub will always introduce each new class by vocally providing a social context
where the gesture is potentially useful; this to preserve at maximum at possible
its social meaning. Each gesture will be recorded once at a time, i.e., gesture
by gesture. To record the hand gestures data, the participant needs to wear a
custom-made inertial glove. Then, the operator helps the participant to wear it
correctly, on their right hand, and ask them to put their hands on the surface of
the desk. The operator checks whether the wireless connection between the glove
and the computer (where data is collected and stored) works correctly and finally
he leaves the data collection station.
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3.6 Further details

Each class of gestures will be recorded in two consecutive phases of about 20
minutes each, where we collect, for each phase, 4 examples for every class. In the
first session, the participant has to perform the gesture without being socially
influenced. iCub explains which gesture should be executed simply by showing a
picture of it on the monitor (as those shown in Figure 3.3). Moreover, the robot
provides a context for the gesture by explaining, in a short speech, a circumstance
where the gesture in the picture could be performed. We will refer to this first
session as “no-priming”, since no complete gesture execution is shown to the vol-
unteer. To clarify how the first session is carried out, here follows an example:
after recording four gesture performances of the first class, the collection is tem-
porarily stopped and iCub shows the volunteer the next gesture to be recorded
(again randomly chosen and always by providing first an illustrative image and
a brief social context by explaining a possible scene where to use the gesture).
Afterwards, the volunteer performs four repetitions of the proposed gesture, the
beginning of each one signaled by a sound. This procedure is repeated until all
the 12 classes are collected, with four examples each.
The second session includes a priming phase, where the volunteer is explained
how to correctly (i.e., in a more standard way) perform the gesture. This is
achieved by showing, on the monitor, a video recording of a person performing
the gesture, thus implicitly giving relevant information (i.e., velocity, accelera-
tion, angular velocity, temporal duration, number of repetitions). The advantage
of providing images and videos of the gesture is that all participants have exactly
the same information needed to perform the gestures.
Similarly to the previous scenario, all the videos are introduced by iCub, which
explicitly asks to repeat every gesture. Note that the videos provided for the
participants are always the same and each gesture in the video is performed by
the same person.

3.6 Further details

The experiments were conducted within 18 days at the “Istituto Italiano di Tec-
nologia” (Genoa, Italy), by involving one to three people per day. As previously
mentioned, each experiment lasted around 55 minutes, where the first 15 ones
were devoted to the description of the experiment and the informed consent,
while the rest to the actual experiment.
The collection process involved thirty-one Italian volunteers (19 males, 12 fe-
males, age: 29± 5 years). Each participant, which had a well-known knowledge
about the Italian hand gestures, experienced the same human-robot interaction
and performed every gesture eight times.
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Among the participants, 23 worked at the “Istituto Italiano di Tecnologia and
had already experienced interactions with the humanoid robot iCub. The 8 re-
maining participants had never experienced any interaction with iCub nor, more
generally, with other humanoid robots.
The glove was always worn in the right hand. Occasionally, some gestures al-
lowed to use both their hands repeating the same movements, but only the data
coming from the right hand were collected. Among the participants, 29 were
right-handed and only 2 were left-handed.

3.7 Error sources and management

Some examples were removed from the data set due to errors that occurred during
the experiment. These errors can be classified according to the causes from which
they originated. The first one is related to the glove wiring connections that, if
not coupled correctly, lead to a drastic reduction in the frequency of the input
data (i.e., from 28 Hz to 10 Hz). This occurred during an experiment in which
the participant used to make very pronounced movements, causing the glove to
collide vividly with the body and thus altering the wiring connections.
For the participants, a very common mistake was to start performing the gesture
outside the predetermined time interval. As explained previously, this interval
was signaled acoustically by playing a specific sound. However, it happened that
some volunteers started to perform the gesture before the sound was fully played,
thus causing a permanent loss of inertial data.
Regarding the no-priming session, we removed 73 examples that corresponds to
5% of the total. Figure 3.6 shows the number of examples for each participant.
The x-axis represents the participants IDs (anonymously depicted in codes) that
took part to the data collection; the y-axis depicts the number of examples col-
lected for each participant. Figure 3.9 shows the number of examples removed
for each participant (x-label) and for each class (colored legend).
Regarding the priming dataset, we removed 19 examples (1.27% of the total) and,
From Figure 3.7, we can see the number of examples for every participant, while
from Figure 3.9 the number of examples removed for each participant (x-label)
and for each class (colored legend).
As pointed out from the previous figures, we can conclude that removing examples
from the dataset does not compromise the balance of its classes.
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Figure 3.6: Number of examples (first session) generated by 31 participants

Figure 3.7: Number of examples (second session) generated by 31 participants
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3.7 Error sources and management

Figure 3.8: Number of removed examples (first session)

Figure 3.9: Number of removed examples (second session)
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Chapter 4

Data acquisition architecture

This chapter explains the methods and tools used to perform the experiments,
with particular attention to the underlying software architecture.
We developed the experiments to collect a dataset of Italian hand gestures. To
achieve this goal, we used several tools, such as a custom-made inertial glove
and iCub (60), a humanoid robot that replaced the role of the human operator
responsible for data collection. In addition, we used two middlewares: Robot
Operating System (ROS) (61) and Yet-Another Robot Platform (YARP) (62).
The overall system architecture can be divided into three macro blocks. Figure
4.1 shows the three modules that compose the system. On the bottom of the
figure, it is depicted the first module, referred to as “ROS Module”. As it will be
explained later on this chapter, this module:

• Measures the inertial data during the execution of Italian hand gestures

• Transmits inertial information to the Main Module following a Publisher-
Subscriber design pattern

The “YARP Module” is depicted on the top of Figure 4.1; this is an interme-
diate module that allows the Main module to properly control iCub during the
experiment. Its main tasks are:

• Time synchronisation of the Main Module with the iCub architecture

• Management of the iCub behaviour (i.e., motion, facial expressions, voice)

The “Main Module”, depicted in the left of the Figure, has the following main
tasks:

• Management of the input messages

• Management of images, videos and sounds
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Main module

YARP module

ROS 
module

Figure 4.1: Graphical overview of the system architectures

4.1 ROS architecture

4.1.1 Prerequisites

Quigley et al. describe ROS as a language-neutral operating system with a micro-
kernel design that allows to improve code re-usability and interpretability (61).
ROS, which is free and open-source, supports different languages (e.g., C++ and
python) and is characterized by a number of processes (also referred to as nodes)
connected at runtime in a peer-to-peer topology. Communication between dif-
ferent nodes occurs in a TCP/IP-based transport, by passing strictly typed data
structures, which are referred to as messages. Messages include primitive types
(e.g., integer, floating-point) and more complex ones (e.g., Imu, PoseStamped,
Twist). Also, messages are exchanged among nodes within named buses called
topics. There are several ways in which messages are exchanged in ROS, like
the Publisher-Subscriber Design Pattern. This mechanism involves the presence
of two or more nodes called publishers and subscribers. The former publishes
messages in a given topic, while the latter reads from it, in a decoupled way.

In the context of this Thesis, messages belong to the Imu type. As the name
suggests, Imu messages hold data measured from Inertial Measurement Units
(IMUs): orientation expressed as unit quaternions; angular velocity ([rad/sec]);
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linear accelerations ([m/s2]). Moreover, Imu messages also contain: “covariance
fields”, describing the covariance of the measured data for each of the three dif-
ferent inertial information; a header, a ROS standard message that contains a
timestamp and an identifier. The covariance fields (named orientation covari-
ance, angular velocity covariance and linear acceleration covariance) may not be
expressed, if the measuring device is unable to calculate them (as is the case
here).

4.1.2 Operation

The functioning of this sub-system is explained following the flow of information
that occurs during the experiment.
The first step is the collection of inertial data, performed by the IMUs in the glove
at the frequency of 28 Hz. The synchronisation and management of the raw data is
carried out by the ESP32 MCU. As soon as data is available, the ESP32 transmits
it via a UDP connection to a ROS node. This node performs a bridging function,
since, once it receives the inertial data via the UDP connection, it constructs
eleven IMU messages (one for each sensor) that are respectively published in
eleven different topics (one for each IMU). Eleven subscribers subscribe to these
topics, one for each topic. These nodes are responsible for: reading IMU messages
as soon as they are available in the respective topic; accumulating and organising
all messages referring to a certain type of gesture and a certain example; saving
this set of data, organised in tables, in eleven different csv files (one for each
phalanx/IMU).

4.2 YARP architecture

4.2.1 Prerequisites

Metta et al. describe Yet Another Robot Platform (YARP) as a C++ open-source
projects based on the following principles:

• Modularity and multi-processing

• Code reusability

• Inter-process communication

These principles are strictly connected and allow to build robot control systems
that are characterized by sets of location-independent modules, running on dif-
ferent machines and communicating among themselves according to one of the
supported protocols (e.g., TCP, UDP, multicast).
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Similarly to ROS, where modules are organized as collections of nodes that ex-
change messages to each other, YARP communication is organized in processing
units called “Ports”. A Port is an active object that manages multiple connec-
tions (either as input or output) distributed in a network of machines. Moreover,
the communication supported by YARP is fully asynchronous. Ports can behave
either as input, if they receive data from one or more ports, or output, if they
send information to one or more ports. By default, as in the Publisher-Subscriber
ROS scenario, YARP ports do not support replies to messages. However, this is
possible considering Specialized Remote Procedure Call (RPC) ports.

4.2.2 Description

As introduced earlier, the role of this module is to make iCub capable of au-
tomatically managing the collection of the dataset. In other words, this module
sends messages that allow the robot to speak, move and change facial expressions,
and thus it is what makes the human-robot interaction possible. Communication
developed to interact with the robot is based on RPC ports which, as described
above, allow data to be sent and a response to be received. More specifically,
three different ports are used.
The first to be described is the one aimed at making the robot talk. This
port, which takes character strings as input, sends data to a specific port called
“/acapelaSpeak/speech:i”, which is part of a pre-defined module (“acapelaS-
peak”) that allows the text to be synthesised by the robot.
An important aspect of this port is that it is blocking: once the YARP module
sends data, the execution of the program is interrupted until the response from
iCub is received, which comes at the end of the synthesization. This is important
because it allows to program predetermined robot behaviors (e.g. when iCub
pronounces a certain word, it can make specific movements and/or facial expres-
sions). It also allows respecting timings, as the execution of the program cannot
continue until feedback has been received from the robot.
The second RPC type is the one that allows iCub to move the arm. It sends data
directly to the robot’s internal services that govern arm movements, which are
“/ctpservice/right arm/rpc” for the right arm and “/ctpservice/left arm/rpc” for
the left arm. It follows that two different connections are needed to control both
arms of the robot. The type of message that is exchanged between the two ports
contains the following information: time of the movement execution, target po-
sition (always null in this context), target orientation. Since the control of the
arms include the hands, the degrees of freedom are 16, and thus the number of
orientations the previous message is composed is 16. For the sake of complete-
ness, Table 4.1 describes the degree of freedom of the right arm (those of the left
arm represent a similar description and nomenclature).
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Table 4.1: Right arm degrees of freedom description (16)

Joint Description Notes

0 Shoulder pitch Front-back movement when the arm is
aligned with gravity (post decoupling in
firmware)

1 Shoulder roll Adduction-abduction movement of the
arm (post decoupling in firmware)

2 Shoulder yaw Yaw movement when the arm principal
axis is aligned with gravity (post decou-
pling in firmware)

3 Elbow none
4 Wrist pronosupination Forearm rotation along the arm principal

axis
5 Wrist pitch when hand-wrist aligned with the arm

principal axis: i.e., this is relative to the
forearm (not necessarily to gravity). De-
coupling made in firmware

6 Wrist yaw Decoupling made in firmware
7 Hand finger adduc-

tion/abduction
None

8 Thumb opposition None
9 Thumb proximal flex-

ion/extension
Single tendon looped

10 Thumb distal flexion Single tendon + return spring for exten-
sion spanning two physical joints

11 Index proximal flex-
ion/extension

Single tendon looped

12 Index distal flexion Single tendon + return spring for exten-
sion spanning two physical joints

13 Middle proximal flex-
ion/extension

Single tendon looped

14 Middle distal flexion Single tendon + return spring for exten-
sion spanning two physical joints

15 Ring and little finger
flexion

Single tendon + return spring spanning
six joints on two fingers
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The actual control of the robot movement, which takes place in the joint space,
is performed automatically, giving as input the previously described message, by
the built-in iCub modules.
The last messages taken into consideration are those responsible for the robot’s
emotions, which are expressed in the face through the LEDs that make up the
mouth and eyebrows of iCub. Again, an RPC port is used, which connects to
a pre-fabricated port named “/icub/face/emotions/in”. In this case, the data
exchanged with the robot is composed of an array of three strings. The strings
inside the array are part of a well-defined dictionary, which is then decoded inside
the iCub emotion module to make the emotions visible.

Considering RPC ports allows iCub to perform exactly the same motions,
emotions and speeches every time the experiment is repeated. This is a key
element in the context of social gestures, because every participant experience
exactly the same human-robot interaction, and thus, their gesture performances
will not be influenced by different stimuli.
Besides emotions, expressions, arm movements and voice descriptions, we decided
to introduce three other functionalities, to make the interaction between humans
and robots more fluid. These are: Recognition and tracking, via gaze and facial
movements, of the participant’s face; eyes blinking; breathing movements. These
functionalities has been already developed by some researchers at the Italian
Institute of Technology.

4.2.3 Operation

As mentioned above, this module has the task of acting as a link between the main
module and the iCub architecture. It receives encoded messages from the main
module, which allow it to identify the behavior to be followed by the robot at that
given time instant. Examples of behavior are: introduction of the experiment,
introduction of the gestures to be carried out, conclusion of the experiment.
These messages are then decoded by the YARP module, which associates each
of them with a series of operations to be carried out by the robot (movements,
speech). The YARP module then produces the messages necessary for the robot
to perform the predetermined actions and transmits them to iCub via the RPC
ports discussed above.
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Figure 4.2: Flowchart of the experiment
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4.3 Main architecture

4.3.1 Description

As described above, the main tasks of this module concern the correct evolution of
the experiment, taking into account the inertial data in input and the behaviour
that the robot must perform at each time instant. In addition, this module deals
with less important tasks such as the audio-visual management of the experiment;
it manages the images, videos and sounds that the participants observe during
the experiment.
As described above, this module communicates with the “ROS module” via a
“publisher-subscriber” design pattern, while it communicates with the “YARP
module” via a dedicated port. Within the latter, unique codes are sent; these are
divided into two types, depending on the meaning the message carries, referred
to as:

• Contextual

• Gestural

Contextual messages are used to manage the initial and final phases of the exper-
iment. In the initial phase, iCub introduces itself to the participant and describes
what its role will be during the experiment: in the final phase, iCub informs them
of the end and thanks them for their participation.
Gesture messages are used to communicate, during the experiment, which of the
12 types of Italian gestures should be performed. These messages contain an in-
teger value belonging to the range [0, 11], where each value is uniquely associated
with a certain Italian gesture.

4.3.2 Operation

Figure 4.2 shows the flowchart of the experiment. It can be categorized into three
main sections. In the first one, iCub briefly describes the tasks the participant
has to complete. This is graphically depicted at the top of the figure in the block
identified as “iCub presentation”. In this phase, the YARP module, after receiv-
ing the corresponding message from the Main module, sends a series of predefined
RPC messages to the robot.
As can be seen from the diagram, the initial phase ends automatically due to the
“blocking” information reading mechanism, which prevents the algorithm from
moving forward until the robot has carried out all the behaviors specified by the
commands received.
As soon as the first phase of the experiment is over, the execution of the algo-
rithm is momentarily interrupted, until the human operator resumes it by means
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of a keyboard input. This is represented by the block at the top-left of the figure
identified as “Operator input to continue”. This mechanism, which allows to be
sure that participants have understood how to carry out the experiment, implies
the presence of a small waiting period in which they can ask for clarification on
unclear aspects of the experiment.
If this is the case, the human operator keeps the experiment paused, to resolve the
participant’s doubts; otherwise, after a short wait of 4 - 6 seconds, the operator
presses the key from the keyboard and then the experiment can proceed.
The second phase of the experiment is divided into two sub-phases, where the
collection of the participant’s inertial data is completed.
In the first phase, referred to as “no priming phase”, the participant is asked
to perform Italian gestures according to their experience. This means that they
are free to make the gestures available in the dictionary, according to their own
habits.
As depicted in the flowchart in Figure 4.2, this phase is repeated twelve times.
For each of the twelve gesture classes, the algorithm randomly chooses one ges-
ture at a time, which will soon be carried out by the participant. This choice
is motivated by the preference to avoid introducing bias effects due to possible
orders of gesture execution, which could occur, for example, if predominantly
“static” gestures were executed before “dynamic” ones.
The next step consists in showing a photo of the gesture to be carried out. Below,
Figure 4.3 depicts one of the images shown to participants during the experi-
ment. The photo management is dynamic: each image is shown for 5 seconds,
after which the robot provides context to the gesture, giving the participant a
possible use-case scenario. The reasons for such a choice are twofold: one of the
primary objectives of the experiment is to establish a human-robot interaction
and, therefore, having the robot interact with the participant allows this aim to
be pursued; the second is to help the participant understand which gesture they
are asked to carry out. As a matter of fact, this may not be immediate from the
images shown, which do not provide any information about gesture characteris-
tics, i.e., execution time, speed, acceleration, number of repetitions.
Once the gesture presentation ends, the execution of the algorithm is automat-
ically interrupted, following the same principle discussed above. In this case,
however, the human operator waits a few seconds to check whether or not the
participant has any doubts about the gesture to be performed. In fact, it could
happen that the image and the context provided are not sufficient for the partic-
ipant to identify which gesture to perform. In these cases, the participant, well
aware that they can ask for information in these specific time intervals, can ask
the human operator for clarifications about the gesture to be made. Otherwise,
as usual, the execution of the algorithm was interrupted for a few seconds before
the inertial data recording started.
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Figure 4.3: Image of the “victory” gesture shown to participants during the
experiments

As explained above, in this phase each gesture is recorded four consecutive
times, each time by manually starting the recording for security reasons similar
to those described above.
Each repetition has to be performed within a time interval of 6 seconds, signalled
by a high-pitched start sound and a low-pitched exhaustion sound, as shown in
the flow chart. It should be noted that, during preliminary studies of Italian
hand gestures, their duration has been assessed to be between 1 and 4 seconds;
the choice of giving 6-seconds does not constrain the participant to modify their
gesture performances. It was deliberately chosen larger than the maximum du-
ration for safety reasons.

The second part of data collection takes place immediately after all gestures
have been collected four times each. Formally, this collection follows the same
reasoning as the previous one: four gestures will be collected again for each
class. What distinguishes this sub-phase, referred to as the priming phase, is the
different way in which iCub asks participants which gestures to perform. In this
case, iCub no longer provides a possible use-case scenario, but explicitly asks what
gesture to do, i.e., calling the gesture class by its name; moreover, the image that
was shown in the previous phase has been replaced by a video showing how the
operator carries out the gesture. The participant, who is asked to carefully watch
the video, can take in dynamic information (temporal duration, speed, number
of oscillations); hence the term “priming”, aimed at indicating a phenomenon
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whereby exposure to one stimulus may influences a response to a subsequent
stimulus.
The third and final phase of the experiment occurs automatically after all classes
of gestures have been collected eight times each, four for the first and four for the
second phase. During this phase, iCub thanks the volunteer for taking part in
the experiment. The way this phase is implemented, from an architectural point
of view, is similar to the previous one and is referred to as “finish” in the last
flowchart block, at the bottom of Figure 4.2. The Main Module communicates,
through the YARP port discussed above, to the YARP module that the end of
the experiment has to be completed; after that, the YARP module uses the RCP
ports to carry out the final behaviour of iCub.
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Chapter 5

Features analysis

This chapter addresses an in-depth analysis of the dataset. At first, we will look
for possible similarities in the way participants perform gestures. Subsequently,
we will explore whether it is possible to reduce the number of features, e.g., by
considering a subset of them.
For further reference, Table 5.1 shows the features that were collected during the
experiments, where (x, y, z) are the components, a stands for linear acceleration,
ω for angular velocity and θ for orientation expressed as unit quaternion.

Table 5.1: Features

ax ay az ωx ωy ωz θx θy θz θw
Base X X X X X X X X X X
Thumb proximal X X X X X X X X X X
Thumb intermediate X X X X X X X X X X
Index proximal X X X X X X X X X X
Index intermediate X X X X X X X X X X
Middle proximal X X X X X X X X X X
Middle intermediate X X X X X X X X X X
Ring proximal X X X X X X X X X X
Ring intermediate X X X X X X X X X X
Pinkie proximal X X X X X X X X X X
Pinkie intermediate X X X X X X X X X X
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5.1 Inter-class analysis

This section explores possible similarities in the way people carried out the ges-
tures, identifying potential clusters in the dataset and investigating if there are
any areas of particular overlapping.

5.1.1 Premises

As mentioned in the previous chapters, the number of features available is rather
large, i.e., 110. This makes it difficult to visually interpret how features are
related. To overcome this issue, we took a feature reduction approach, decreasing
the number to 2 new features, built from the initial ones. These resulting features
will be plotted in a plane to detect the presence of clusters.

To reduce the number of features, we consider the Pairwise Controlled Mani-
fold Approximation Projection (PaCMAP) (63). It is a recent dimensional reduc-
tion algorithm that, compared to methods like UMAP (64) and TriMAP (64),
allows to obtain a low-dimensional representation of the dataset, preserving each
original observation’s neighborhood (local structure) and each original relative
positions of neighborhoods (global structure). PaCMAP is an iterative algorithm
that works by minimizing a loss function that consists of three terms: one takes
into account the contribution of the neighbors, one of the mid-near pairs and
another of the further points.

Before carrying out the feature reduction, a clarification is necessary. As
explained above, the complete execution of one gesture is defined by the temporal
evolution of 110 features. The temporal dimension can be seen by looking at the
gesture in Figure 5.1, where is shown the evolution of one single feature, i.e., the
linear acceleration of the proximal phalanx of the index finger. The blue dots
in the figure indicate the samples, sampled at a frequency of 28 Hz, while the
continuous line is displayed to give a more concrete idea of the velocity profile.
If we were to carry out feature reduction from this dataset, as it is the case in
Figure 5.2, the result would not be very satisfactory, because each gesture would
be entirely defined by a sequence of samples, as in the original dataset.
From a graphical point of view, it would be more difficult to understand the
similarities between different classes, as there are many more points in the chart
with possible overlaps.

To overcome these difficulties, we derived a new set of features, and by doing
so, we removed the temporal dimension from the dataset: each repetition of a
gesture is now a single sample, and not a time-series as in the original dataset.
Furthermore, the flattening of the temporal dimension helped highlight similari-
ties that were not evident with the original features, as we will see later.
The reduction in the number of features takes place in two distinct stages.
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Figure 5.1: Linear acceleration (x-component) of the index proximal phalanx

Figure 5.2: PaCMAP projection of the original dataset

In the first one, to remove the temporal dimension from the dataset, 11 features
are computed from every original feature.
The dimensionality of one single gesture in the dataset is:

G = [m,n]

where n = 110 is the number of features and m is the number of samples that
constitute that gesture (i.e., temporal dimension). Indeed the number of samples
m is not generally fixed, as gestures do not have a fixed temporal duration.
During the initial phase, for each of the n features, we computed the following new
ones: mean, standard deviation, minimum, maximum, median value, variance,
skew, kurtosis, standard error, mean absolute deviation.

From this follows that, after the initial phase, each gesture is now characterized
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by the following dimensionality:

G = [1, l · n]

Where l = 11 is the number of new features to be computed for each of the
original n features. As the dataset consists of the repetition of 2884 gestures, the
overall dimensionality of the dataset is therefore equal to:

G = [2884, l · n]

At the end of this first phase, the size of the dataset has considerably increased
(10 times) along the column dimension (from 110 to 1210 features), while it has
considerably decreased (190 times) along the time, row, dimension (from 461.440
to 2884).
In the second phase, the PaCMAP algorithm is applied to G, by setting its three
hyperparameters:

— Number of neighbors
considered in the k-Nearest Neighbor graph, here set to 5

— MN ratio
the ratio of the number of mid-near pairs to the number of neighbors, here
set to 0.7

— FP ratio
the ratio of the number of further pairs to the number of neighbors, here
set to 1.9

The output of the PaCMAP is a new dataset in which each gesture has the
following dimensionality:

G = [1, 2]

Since the number of examples recorded was 2884, it follows that the reduced
a-temporal dataset has the following dimensionality:

G = [2884, 2]

which is indeed greatly reduced with respect to the original one.

5.1.2 Clusters

The following analyses are carried out considering the dataset derived previously,
which is now split into two distinct sets: one contains the no priming data, while
the other the priming data.
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Figure 5.3: PaCMAP projection of priming dataset

In Figure 5.3, it is shown how one feature of the dataset, i.e., First PaCMAP
feature, represented in the x-axis, varies with respect to the other one, i.e., Sec-
ond PaCMAP feature, represented in the y-axis. The figure shows all the gestures
performed by all the people; each point in the plane represent a complete execu-
tion of one single gesture, and is marked with a color that depends on the class
the gesture belongs to. From the figure, it is possible to observe two well-defined
clusters. The one on the right, referred to as C1, includes the most dynamic
gestures, with well-defined swinging motions. They are: “Let’s go away”, “Very
good”, “Bye”, “What a bore”, “It’s not possible”. Such gestures do not have
distinct movements of the phalanges of the fingers1; the oscillatory motions are
generally the same for all phalanges and roughly coincide with those of the hand
(metacarpal bones). The most evident example can be found in the “Bye” ges-
ture, where the hand rotates with respect to the wrist, without any internal hand
movement.
From the cluster on the left, referred to as C2, it is possible to observe gestures
that, in a broad sense, are normally more static. These gestures are: “A drink”,
“Fear”, “What do you want”, “Silence”, “Come here”, “Quotation marks”, “Vic-
tory”.
Within this cluster, it is possible to carry out a further analysis, dividing it into
two sets: one at the top and one at the bottom. In the upper part there are the
gestures “What do you want”,“Fear” and “Come here”, while in the lower part
“A drink”, “Quotation marks” and “Victory”.
The main difference between these two clusters concerns the fingers that bring
“more information”2 during the hand movement. In the cluster at the bottom,

1The reader may refer to Table 3.2 for a description on the Italian hand gestures
2The fingers that bring more information are those that allow the gesture comprehension

at a social level
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Figure 5.4: Focus on sub-cluster of Figure 5.3

gestures are all performed with index and middle as most informative fingers. In
contrast, in the upper cluster, gestures include movements by several phalanges
of the hand. This is not particularly evident for the gesture “What do you want”,
but it is for the gesture “Fear”, where all phalanges open and closes repeatedly.
By slightly modifying the parameters with which the PaCMAP algorithm is car-
ried out, it is possible to highlight the distance between the two sub-clusters.
Figure 5.4 shows the result of the PaCMAP giving as parameters: n neighbors=5,
MN ratio=0.56, FP ratio=2.9. Note that, compared to the figure 5.4, now the
clusters are inverted: gestures performed with the index and middle fingers (e.g.,
“Victory”) are now at the cluster at the top, while those that includes several
phalanges (e.g., “Fear”) are at the bottom of the figure. Nevertheless, the prin-
ciple is the same: despite the presence of some outliers, the figure depicts much
more clearly these two sub-clusters.

Let us now repeat this analysis considering the other dataset, collected be-
fore the priming phase. It should be remembered that, as described earlier in
Chapter 3, this data collection was carried out without providing any external
stimulus that could in any way influence the way participants perform gestures
(priming). Participants had to reproduce gestures according to their experience
and habits. With these premises, it is reasonable to assume that the variability
of this dataset is much higher than the one of the other dataset, collected after
the priming phase. This was evident from the beginning, simply observing how
hand configurations and movements assumed during the gestures varied between
participants.
Figure 5.5 shows the no priming dataset, First feature against Second feature,
depicted in the x and y axis respectively. Again, the figure shows all gestures
performed by all people, and every point in the plane represent a complete exe-
cution of one single gesture (different colours correspond to different classes).
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Figure 5.5: PaCMAP projection of no priming dataset

Figure 5.6: Focus on “A drink” of Figure 5.5

Looking at the figure, we can see the high variability of this dataset; unlike the
data obtained after the priming, where clusters were definitely present, this is not
the case here. There are certainly two main clusters, one in the middle and the
other on the right of the figure. However, it is not possible to identify distinct
zones, populated only by examples belonging to one single class. This aspect
highlights the fact that gestures made by different people can be very dissimilar,
since they are located in distant positions in the plane (as shown in Figure 5.6,
where is provided a focus on the “A drink” gesture).
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5.1.3 Inter class similarities

Let us now consider the figures above to see whether there are, in general, simi-
larities between classes of gestures.
Figure 5.3 showed that gestures can be divided into two macro-categories: one of
the most swinging gestures, and another whose gestures are mainly characterized
by finger movements. In the first category, it can be observed that there is no
overlapping between examples belonging to different classes. This aspect empha-
sizes that, when participants are asked to perform these gestures, they all behave
similarly. Gestures from a given class are very similar to each other because they
are very close in plane. Instead, gestures of different classes are more distant and
thus dissimilar enough to be further clustered.
On the other hand, looking at the gestures in the cluster on the left of Figure
5.3, it is possible to identify some clear similarities. This is particularly evident
for the two classes “Victory” and “Quotation marks”, which are shown in Figure
5.7 (zoom of Figure 5.3). From the above figure, is possible to observe some over-
lapping between the examples of these two classes. This indicates two important
aspects: the first is that “Victory” and “Quotation marks” are two very similar
classes. This behavior was predictable, as the configuration assumed by the hand
during these gestures was almost identical.
The second important aspect concerns the fact that the similarity between these
two classes is evident for most of the participants. This allows to conclude that,
globally, when participants are asked to perform these gestures, they all behave
similarly and carry out these gestures in a comparable manner.

Figure 5.7: Focus on “Quotation marks” (in purple) and “Victory” (in green)
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5.2 Feature Selection

What characterizes the dataset of Italian gestures is the high number of features,
that is 110. This is a consequence of the large number of sensors used in data
collection: we employed all the available IMUs because it was not clear, a priori,
which features were the most informative. Now, understanding those that are
the most informative features is important for two reasons:

• reduce the number of sensors employed for gesture recognition
• reduce computational complexity

In the previous chapter, we achieved this by reducing the dimensionality of the
dataset through data-driven and model-based transformations (e.g., PaCMAP).
However, it would be interesting to consider only some of the original features,
without the need of applying any transformation.
This section discusses Recursive Feature Elimination, one approach that allows
to determine a subset of the initial features. Therefore, reducing the samples,
i.e., the number of rows of the dataset, is beyond the scope of this section.

5.2.1 Recursive Feature Elimination

Recursive Feature Elimination (RFE) is a feature selection algorithm that belongs
to “wrapper” methods (65). They work by creating several models, with different
subsets of input features, and selecting those that perform best according to given
metrics.
RFE selects a desired number of features, by recursively considering smaller and
smaller sets, where the least important features are pruned at every iteration
through a ranking mechanism. This is possible considering an external estimator
that, at each iteration, assigns weights to each feature.
As mentioned above, the RFE approach needs as input the number of features to
be preserved. However, this may not be known a priori, as is the case here. To
overcome this issue, RFE and cross-validation (RFECV) are considered. RFECV
allows determining the optimal number of features through a cross-validation
approach, where different subsets of features are assigned and the best collection
of scored features is selected.

5.2.2 Feature selection

RFE is carried out two times, considering two different models: a Linear Re-
gression and then a Random Forest Classifier. For the implementation, we used
sklearn, a python library that includes all the elements needed for carrying out
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this analysis.
Considering the Linear Regression model, we found the following features (Table
5.1:

Table 5.2: Features selected considering Linear Regression model

ax ay az ωx ωy ωz θx θy θz θw
Base X X X X - X - - - -
Thumb metacarpal X X - - - - - - - -
Thumb intermediate X X - X - - - - - -
Index proximal X X X X - X - - - -
Index intermediate X X - - - - - - - -
Middle proximal - X X - X - - - - -
Middle intermediate - X X - - X - - - -
Ring proximal X - X - - - - - - -
Ring intermediate X X - - - X - - - -
Pinkie proximal - - - - - - - - - -
Pinkie intermediate - - - - - - - - - -

“ - ” indicates the features that are no longer part of the original features set
(Table 5.1)

On the other hand, considering a Random Forest Classifier, we obtained the
reduced features shown in Table 5.3.
Generally speaking, both feature reduction approaches allow to significantly re-
duce the number of features. In fact, it is possible to consider 10 IMUs out of 11.
In terms of individual features, the linear regression model allows 28 features out
of 110 to be considered (−74.5%), while the random forest 37 features (−66.3%).

Comparing the features extracted from the two models, we can observe some
elements in common and some differences. Both tables show that the features
produced by IMUs in the pinkie are not relevant, as they are never selected by the
RFE algorithm. The most informative features are the linear accelerations. More
specifically, those of the base-index (proximal phalanx) are equally important, as
selected by both approaches. Regarding the other accelerations, we can observe
some differences: in Table 5.2 (RFE model: linear regression) the z-component
of the linear acceleration of the index (intermediate phalanx) is excluded from
the set, while this is not the case in Table 5.3 (RFE model: random forest). An-
other very distinct difference concerns the choice of angular velocities compared
to that of orientations. In the first case (linear regression), there is no quaternion
among the selected features; on the contrary, considering a Random Forest as a
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Table 5.3: Features selected considering Random Forest model

ax ay az ωx ωy ωz θx θy θz θw
Base X X X - - - X X - X
Thumb metacarpal X X X - - - - - - -
Thumb intermediate X X X - - - - - - -
Index proximal X X X - - - X X X X
Index intermediate X X X - - - X X X X
Middle proximal - X X - - - - - - -
Middle intermediate X X X X - - - - - -
Ring proximal X - X - - - - - - -
Ring intermediate - X X - - - - - X -
Pinkie proximal - - - - - - - - - -
Pinkie intermediate - - - - - - - - - -

- indicates the features that are no longer part of the original features set (Table
5.1)

model, there is no angular velocity (apart from one single outlier). This aspect
underlines that the choice of the features may depend on the model considered.
Nevertheless, it can happen that the angular velocity and the quaternion orien-
tation features refer to the same phalanges: in the base and in the index, the
linear regression selects the angular velocities, while the random forest selects the
orientations. This aspect underlines again the importance of such phalanges for
gesture recognition.
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5.2.3 Feature selection on static and dynamic clusters

In section 5.1.2, it was shown that gestures can be divided in two main clusters,
below repeated for simplicity:

• C1, characterized by gestures with swinging motions (“Let’s go away”,
“Very good”, “Bye”, “What a bore”, “It’s not possible”)

• C2, characterized by more static gestures (“A drink”, “Fear”, “What do
you want”, “Silence”, “Come here”, “Quotation marks”, “Victory”)

In this section, we will repeat the RFE analysis considering firstly the gestures
in C1, and then those in C2, with a random forest model. Note that the features
extracted during these analyzes are compared with those in Table 5.3, henceforth
referred to as the reference table. In the reference table, as previously discussed,
features have been extracted considering the entire dataset and a random forest
model. The purpose of this analysis is to confirm the different characteristics
between the classes in the two clusters.

Table 6.1 shows the features extracted by the RFE algorithm, considering
only those gestures that are part of C2. It is possible to observe some differences
from the reference table 5.3. In particular, the following features are not included
in the new subset:

• the x-component of the linear acceleration of the thumb and index finger
(intermediate phalanges)

• the y-component of the quaternion orientation of the base and index finger
(intermediate phalanx)

On the other hand, there are new features, not initially present in the original
table, which are:

• x and y components of the angular velocity of the index finger (proximal
phalanx)

• z-component of the angular velocity of the ring (intermediate phalanx)
• y-component of the quaternion orientation of the middle (proximal pha-

lanx)

Table 5.5 shows the features extracted by the RFE algorithm, considering
only those gestures that are part of C2. In this case, the features missing from
those extracted in the reference table are:

• x-component of the linear acceleration of the thumb (metacarpal phalanx),
index and ring (proximal phalanges)
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• y-component of the linear acceleration of the thumb and ring (intermedi-
ate phalanges)

• z-component of the linear acceleration of the ring (proximal phalanx)
• x-component of the angular velocity of the middle (intermediate phalanx)

On the contrary, new features have been added, corresponding to:

• x and y components of the quaternion orientation of the thumb (metacarpal
phalanx)

• z-component of the middle (proximal phalanx), base quaternion orienta-
tions

• w-component of the quaternion orientations of the middle (proximal pha-
lanx), ring (inter phalanx).

Table 5.4: Reduced features, computed giving as input the “static” dataset

ax ay az ωx ωy ωz θx θy θz θw
Base X X X - - - X é - X
Thumb metacarpal X X X - - - - - - -
Thumb intermediate é X X - - - - - - -
Index proximal X X X - - - X X X X
Index intermediate é X X � - � X é X X
Middle proximal - X X - - - - � - -
Middle intermediate X X X X - - - - - -
Ring proximal X - X - - - - - - -
Ring intermediate - X X - - � - - X -
Pinkie proximal - - - - - - - - - -
Pinkie intermediate - - - - - - - - - -

Xindicates the features that were present in the reference table.
� indicates the features that were not present in the reference table.

é indicates the features that are no more present with respect to the reference
table.
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Table 5.5: Reduced features, computed giving as input the “dynamic” dataset

ax ay az ωx ωy ωz θx θy θz θw
Base X X X - - - X X � X
Thumb metacarpal é X X - - - � � - -
Thumb intermediate X é X - - - - - - -
Index proximal é X X - - - X X X X
Index intermediate X X X X - - X X X X
Middle proximal � X X - - - - - � �
Middle intermediate X X X é - - - - - -
Ring proximal é - é - - - - - - -
Ring intermediate - é X - - - - - X �
Pinkie proximal - - - - - - - - - -
Pinkie intermediate - - - - - - - - - -

Xindicates the features that were present in the reference table.
� indicates the features that were not present in the reference table.

é indicates the features that are no more present with respect to the reference
table.

Comparing the features introduced/removed during these analyses, we can
notice that there are no cases where some IMUs are more important than others;
this happens because the features added/removed are isolated 1.
Despite this, it is possible to observe that the features of the gestures in C1 are
devoid of many of the linear accelerations of the phalanges that were present in
the reference case (-25%), as they were considered less informative. This aspect
is consistent with the nature of these gestures, which are mainly characterized by
wrist movements, without marked movements of the phalanges (as in C2 ).
On the other hand, the cluster in C2 continues to have more or less the same
number of linear acceleration features (-8%). Once again, this aspect is consistent
with the nature of C2 gestures, which are mainly characterized by movements
within the phalanges. In addition, in this case, the importance of some phalanxes
(e.g.: intermediate component of the index finger) is underlined by the presence
of angular velocities.

1the term isolated is used to indicate features that have been introduced singularly, without
taking into account other features they are related to. As an example, in Table 6.1 the RFE
algorithm introduced the y-component of the quaternion orientation of the middle (proximal
phalanx). However, all the other components, i.e., x-y-w, are not part of the feature set, and
thus this makes the new feature isolated
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Chapter 6

Gesture classification

In this chapter, we address the topic of gesture recognition, following an approach
consistent with the one that is already standard in the literature (24). To this end,
we will address the problem of gesture recognition in two distinct phases. Initially,
we will pre-process the dataset, to make it more suitable for the next steps. Then,
we will: define an LSTM-based model, a consolidated solution available in the
literature (10); establish the best hyperparameters through cross-validation; train
the model with the dataset obtained before and after the priming, considering
both all the features (110) and a subset of them (30); study the obtained results
and establish which model best fits. Note that the following study is addressed
offline and assuming that every gesture provided to the neural network is one of
the gestures in the dictionary (closed-world assumption).

6.1 Data pre-processing

As pointed out in the literature, the first step in the gesture recognition pipeline
often consists in carrying out a pre-processing of the dataset. In the context of
this study, this involves three distinct phases. At first, the dataset is segmented
to extract only those information relevant for the training of the probabilistic
model. Next, it is normalized and finally padded to match the length of the
gestures, which are generally different.

6.1.1 Automatic segmentation

When collecting the dataset, the participant had much more time available than
the average time needed to perform gestures. This resulted in all inertial data
presenting a section devoid of any movement. Therefore, it is necessary to apply
segmentation techniques, which allows to extract the relevant portions of data
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from the raw dataset.
We developed an automatic segmentation algorithm to extract the relevant por-
tions of data from the input sequences. Given a gesture, the algorithm com-
putes, for each IMU, the norm of the acceleration components and identifies
the start and the end points of a gesture by applying a threshold, here set to
1.2 · 9.81 m/s2 = 11.76 m/s2, estimated when the hand was held steady in the
initial rest position. This assumes, obviously enough, that the relevant motion in
each trial corresponds to the gesture execution.

6.1.2 Normalization

Typically, normalization is one of the preliminary steps for machine learning; it
allows to rescale on a common scale the values assumed by the features, without
distorting them. Usually, in these cases, the variations of the features differ from
each other by several units of magnitude. In this context, there is a significant
difference between the range of variation of the linear accelerations, whose values
vary in the order of thousands of units, and that of the orientation features, whose
values range between [0, 1].
Therefore, we normalized all linear accelerations and angular velocities in the
dataset. To do so, we considered the minimum and maximum values measurable
by the IMUs in the glove, which correspond to: |4 · ~g| for the triaxial linear
accelerations; |2000| rad/sec for the triaxial angular velocities. Note that the
unit quaternion was not part of the normalization, since it is already within the
target range.

6.1.3 Data padding

As explained in the previous chapters, gestures usually have a different number of
samples. This occurs because each participant carries out gestures in their way,
taking a slightly different amount of time. Since the following neural network
needs gestures with an equal number of samples, we padded the data, adding
zeros to the end of each trial, obtaining sequences with the same number of
samples, here set to the maximum number of samples found in the dataset, i.e.,
160.
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6.2 Model architecture

We selected a state-of-the-art network for these kinds of studies, i.e., a Long-Short
Term Memory (LSTM) Recurrent Neural Network (RNN), for its capability to
learn time-dependent information (66). We selected the best hyperparameters
considering standard cross-validation approaches, later discussed. Overall, the
model architecture is defined by:

• an initial masking layer ;

• a bi-dimensional LSTM layer, with 264 neurons, “tanh” activation func-
tion, “sigmoid” recurrent activation functions and L2 kernel regularizer
with penalty equal to 0.001

• a dropout layer

• a dense layer with 184 neurons and a “relu” activation function

• a dense layer with 12 neurons and a “softmax” activation function

The classification model is implemented using Keras and TensorFlow. As ex-
plained in the previous chapters, each Italian gesture may have different lengths
because, generally, participants carry out gestures in their own way, taking a
slightly different amount of time. For this reason, we padded the data to obtain
sequences of 160 samples and used an initial masking layer; the latter allows to
exclude, from the following computations, the values added during the padding.
The model is based on a bidirectional LSTM, which is an extension of traditional
LSTM layers that involves duplicating the first recurrent layer in the network.
Having two (duplicated) layers allows to give as input both data as it is and its
reversed copy. This mechanism is useful when, in cases like those of this study,
data sequences are available all at once, and thus it is possible to exploit both
past (input) and future (reversed input) information.
The L2 kernel regularizer, also known as weight decay, is a regularization tech-
nique that reduces overfitting, by intuitively allowing the model to prefer learning
small weights. This is achieved adding a term to the cost function, which is scaled
by the regularization penalty. As described above, the LSTM layer contains a L2
regularizer with penalty equal to 0.001. Moreover, to prevent overfitting, we recur
to Dropout regularization. It is a regularization technique that, unlike kernel and
bias regularizers, modifies the network structure. The latter is randomly deprived
of some neurons, selected with a frequency here set to 0.3.
Following the LSTM layer, two dense layers are employed. The first one receives
the last LSTM hidden state, whose dimensionality coincides with the number of
neurons, i.e., 312; the second one follows the dimensionality of the previous dense
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layer, i.e., 156 neurons, and brings it back to the original number of features (12).
Note the use of the final “softmax” activation function, which allows to obtain
the probabilities that the input gesture belongs to each of the 12 classes.
As initially mentioned, the choice of model architecture was made taking into
account similar studies (31) - (10).

6.3 Approach

Hereafter, the model is trained offline, having all the gestures available in advance.
Hence, no online analysis takes place. The neural network takes as input gestures
characterized by time-series of 160 timestamps and 110 features. Since the dataset
contains multiple examples, the model input is a three-dimensional matrix, where:

• the first dimension (rows) depicts the timestamps

• the second dimension (columns) corresponds to the features

• the third dimension (depth) represents the samples, where each samples is
a complete gesture execution (160 timestamps, 110 features)

Note that the maximum LSTM ability to learn time dependent information ex-
tends over the duration of a gesture, which corresponds to 160 samples, i.e., 5.7
seconds.

In the following analyses, the dataset is split into three different parts, de-
fined automatically and randomly at run time. A portion of the dataset (60%
approximately) is given to the training set, which is used during the learning ; a
small section (15%), is reserved to the validation set, which allows to check the
performances during the training and, eventually, to interrupt it in case they are
satisfactory enough (early stopping).
A small portion of the dataset (25%) is assigned to the test set, which is fed to
the trained model for evaluating its performance.
How training, test and validation sets are built is fundamental to carry out a
statistical analysis of the model performances. If data were split in a purely ran-
dom way, there would be no control over the number of examples per class in
the training and in the test sets. This could lead to unbalanced sets, where some
classes occur more often than others. This is also valid when reasoning in terms of
participants, not gesture classes. Because data from wearable sensors are highly
variable and person-dependent, it is important to ensure that the contribution of
participants is balanced.
With these principles in mind, the following analyses are carried out considering
k-fold cross validation (kFCV). In general, k-fold divides all samples into different
groups, i.e., folds, which should approximately be of equal size. Given k folds, the
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model is trained considering a training set of k − n folds, and evaluated on the
remaining ones. The overall performance is computed as the mean of all the fold
performances. More specifically, we consider: Stratified kFCV, which provides
stratified folds, where each fold contains approximately the same percentage of
samples of every target class; GroupKFold, a variation of k-fold which ensures
that the same group of participants (25% of the total) is not represented in both
testing and training sets.
We consider stratified kFCV because, in the case of offline studies, it effectively
allows the validation of the system. However, we also consider group-kFCV ap-
proaches because, as pointed out in the literature, data generated by wearable
sensors are highly participant-dependent. Therefore, to get an idea of what per-
formance the system would have if used online, we need to consider this type of
cross-validation.

6.4 Hardware characteristics

The model is trained and evaluated on one single computer, whose characteristics
are stated below:

Table 6.1: Hardware requirements

OS Ubuntu 20.04.03 LTS
OS Type 64-bit
GNOME Version 3.36.8
Processor Intel Xeon(R) CPU E5-2630 v2 @ 2.60

GHz × 12
Memory 16 GB
Graphics NVIDIA Corporation GK110 GeForce

GTX Titan, 6 GB GDDR5 memory

6.5 Models trained with original features

In this section, we analyse the performance of the model, considering all available
information. In other words, the dataset used to train the model includes all 110
features. As in the previous sections, the Italian hand gesture dataset is divided
into two sets, the one obtained before the priming, and that obtained after the
latter. As a consequence, the analysis is carried out two times, one for each
subset, considering stratified cross-validation. Table 6.2 summarizes the model
performances, while Figure 6.1 shows one possible evolution of the validation
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accuracy and loss during the training of the model. Both models show a fair
generalization capability, as the accuracy is higher than 80%, with a standard
deviation that does not vary much. This is a satisfactory result for two reasons:
the higher number of classes, compared to those available in the literature (8; 9);
the variability among gestures performed by people with different experiences
does not compromise the generalization capabilities of the model. Table 6.2 shows
that the accuracy of the priming-based model is higher than that of the non-
priming-based model. This result is reasonable, since, in the analyses provided
in the previous chapters, it was pointed out the high variability of this dataset.
Figure 6.2 shows one of the confusion matrices evaluated during the stratified
kFCV, giving as input the priming dataset. In the diagonal of the matrix, we
can see the number of trials correctly classified, which is 92.0% of the total. Note
that the maximum number of trials, for each class, is 31 on average. The matrix
allows to visualize graphically the performance of the model: almost all classes are
correctly categorized; nevertheless, the matrix shows that the two classes “What
do you want” and “Fear” are the ones that are most confused by each other. The
confusion matrix obtained feeding the model with the no priming data is not
provided, as the results are analogous.

Table 6.2: Model performances - original dataset

no priming priming
Training accuracy 96.2±2.6% 98.4±2.3%
Test accuracy 85.0±2.5% 94.3±3.0%

The same analysis is carried out considering groupKfold cross-validation. In
this case, as previously mentioned, data were divided in terms of participants
(i.e., training set: 60%, validation set: 15%, test set: 25% of the dataset), so that
the contribution of the ones considered in the training set did not contaminate
the test set. In this case, the priming accuracy drops to 96.3±1.4% (training set)
and 77.8± 5.1% (test set). For the no priming dataset, the training set accuracy
is equal to 98.0 ± 0.4%, while the test set accuracy drops to 69.5 ± 5.6%. Once
again, this highlights the high variability of the no priming dataset.
Overall, given the high participant-variability of wearable sensors, the previous
accuracies are a satisfactory result, which could be improved by collecting more
data.
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Figure 6.1: Validation accuracy and loss evolution - priming dataset

Figure 6.2: Confusion matrix computed on priming dataset, considering all fea-
tures
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6.6 Reduced features

In this section, we show the model performances when it is trained with a subset
of features. For clarity, the subset of features includes the accelerations and angu-
lar velocities of the index, ring and base components (proximal and intermediate
phalanges). We extracted these features from Table 5.2 (Chapter 5), considering
all the components of the most informative fingers.
Table 6.3 summarizes the model performances obtained considering groupKfold
cross-validation. As in the previous case, both average accuracies are sufficiently
high. This is especially evident in the priming dataset. Furthermore, having
low standard deviations allows us to conclude that the generalization capability
of the model is satisfactory enough to allow its deployment. In Figure 6.3 we
show one of the confusion matrices evaluated during the cross-validation, giving
as input the no priming dataset. As the matrix suggests, almost all the classes
are correctly classified.

Table 6.3: Model performances - reduced dataset

no priming priming
Training accuracy 95.9±1.6% 97.5±0.6%
Test accuracy 78.2±2.3% 85.3(±3.4)%

6.7 Model comparison

In this section, we evaluate the performance of models trained with all features,
i.e., 110, and with a subset of them, i.e., 30. Hereafter, the models are respectively
referred to as original model and reduced model.
The model architecture, i.e., the layers and the hyperparameters, is similar to
the previous one. The only difference regards the smaller number of inputs,
which influences the dimensionality of the LSTM hidden layer. Comparing the
performances of the original model, evaluated considering a group kFCV, with
those of the reduced model, we can observe that the accuracy of the models has
slightly improved (+8.7% for the no priming data and +7.5% for the priming
data). Besides, the reduced model is much less complex: the main reason is
the lower number of parameters, which is a consequence of the lower number
of features. More precisely, the number of parameters is 17% lower than in the
original model, which was characterized by about 500000 parameters. This is
important because, having fewer trainable parameters, reduces the time spent
training the model. In fact, it was reduced by 20% compared to the original
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Figure 6.3: Confusion matrix computed on no priming dataset considering the
subset of features

model (2.00 ± 0.15 minutes against 2.50 ± 0.26 minutes). As a marginal note,
reducing the number of parameters also resulted in a significant reduction (16.5%
less) in the amount of memory required to store the model, i.e., around 20 MB.
From this analysis, it appears that the reduced model result in a good trade-
off between computational complexity and accuracy of the system. Hence, the
model can be trained with the reduced feature set, as it is a good trade-off between
model-dataset complexity and system accuracy.
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Chapter 7

Conclusions

Nowadays, the technical and technological evolution allows researchers to inves-
tigate deeply the Human-Robot Interaction possibilities. To obtain an efficient
HRI, it is of most importance to understand the mechanisms that handle the
human interaction. Once such mechanisms are well-defined, the focus can be
extended to interactions with robots.
As we saw in the literature review, human interaction is complex due to the mul-
titude of mechanisms and ways it is carried out. An individual can communicate
with words, gestures, body part movements, eye gaze and even silence. As a
consequence, having the robot to model all these aspects is a big challenge.
As seen in chapter 2, there are numerous studies addressing gesture recognition, a
key element in non-verbal communication. However, they focus on unnatural and
synthetic gestures, with low social relevance. Therefore, we decided to analyse
from scratch the Italian gestures, which are distinguishable for their social impact
and for the naturalness and spontaneity with which they have been evolving over
the centuries (67).

With that being said, this Thesis aimed to provide a pioneering study of Italian
gestures, including: glove-based data collection organized as human-robot inter-
actions, which reflect the social nature of gestures; study of similarity behaviors
between the classes examined; gesture recognition via consolidated data-driven
approaches.
To complete the data collection, we set up experiments in which iCub was re-
sponsible for the acquisitions. During the experiments, iCub led participants to
perform Italian gestures, by verbally providing imaginary contexts designed to
bring them into concrete situations, where they could use the gestures. Using a
robot allowed to precisely provide the same stimuli to all participants, an impor-
tant aspect due to the social nature of this study.
Thirty-one people participated in the experiments; each of them reproduced 8
times each of the 12 classes of gestures. Hence, we collected 2884 gestures in
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total. More specifically, gestures were collected in two distinct phases, each of
4 repetitions for each class. In the first phase, participants reproduced gestures
based on their experience; in the second phase, a video showing the execution
of each gesture class was shown before reproducing the gestures (priming). This
division was preserved throughout the Study, indicating the data collected in the
two phases as no priming and priming respectively.
Once the experiments were finished, the focus shifted to analysing the data col-
lected through the custom made inertial glove. Initially, we removed the failed
trials and applied normalization and automatic segmentation to all the gestures
in the dataset. At this stage, it was possible to address the complexity of the
dataset, characterised by the temporal evolution of 110 unique time-series. To re-
duce such complexity, we extracted atemporal features from each time-series and
applied Pairwise Controlled Manifold Approximation (PaCMAP), a data-driven
approach that allowed to describe each example through two unique features.

This allowed us to carry out the gesture analysis, by which we discovered that
priming gestures have an intra-class similarity that is much higher than that
found in the no priming data. Moreover, we pointed out the occurrence of two
main clusters, one whose gestures are characterized by phalanx movements, and
another with more general hand movements. Lastly, we concluded on the marked
similarity between the classes “Quotation marks” and “Victory”.

During this study, we examined the possibility of reducing, a priori and with-
out necessarily recurring to data-driven techniques, the number of features, se-
lecting the most informative ones, to reduce the complexity of this pioneering
dataset as much as possible. Performing this analysis, implemented through an
approach known as Recursive Feature Elimination (RFE), we observed that the
most informative features are only 30 out of 110, i.e. 27% of the total.

The last contribution of this study was to address the recognition of nat-
ural and spontaneous gestures. More specifically, the purpose of this analysis
was to understand if it was possible to recognize gestures offline and under a
close-world assumption1, evaluating the model’s performance and establishing a
trade-off between computational complexity and system accuracy, rather than
its online implementation. Therefore, we used a standard solution shown in the
literature, based on a Long-Short Term Memory Recurrent Neural Network, for
its ability to learn time-dependent information.
To evaluate the model performances, we applied standard cross-validation ap-
proaches, considering a training, validation, and test set respectively equal to
60%, 15%, and 25% of the dataset. We repeated the training of the model, feed-
ing it with the no priming and then priming datasets. At first, we considered all

1As explained in the previous chapter, with the closed-world assumption, we assume that,
during training, every input gesture is necessarily one of the gestures in the dictionary.

77



7.1 Limitations and Future work

the features, but then only the most informative ones.
By assessing the performance in the test set, it emerged that, in general, the
priming model works better than the one trained with the no priming data.
This is due to the high variability of the latter dataset, where each participant
reproduced gestures based on their own experience. This result highlighted the
importance of the priming phase, which allowed us to obtain less variable inertial
data.
Furthermore, comparing the model trained with fewer features to the one trained
with all features, it was found that performances slightly increased (around 7%).
Moreover, the reduced model was less computationally complex, with significantly
lower time required for the training (20% less). Overall, the model trained with
a reduced number of features turned out to be a satisfactory trade-off between
computational complexity and accuracy of the system, and was therefore selected
as the preferred solution.

7.1 Limitations and Future work

A drawback of the proposed gesture recognition model concerns the closed-world
assumption: every input gesture is necessarily one of those in the dictionary with
which the model was trained. If this is not the case, the model will try to classify
the gesture as such and will make a mistake. However, in the context of this The-
sis, the aim was not to implement from scratch a model capable of recognizing
gestures online, but rather to undertake a study of natural and socially useful
gestures. Hence, it was proven that not all IMUs are equally important in the
gesture recognition, and we extracted only those most informative, then used to
train the final model.
The natural progression of this work will involve the online deployment of the
model, which would classify gestures on the fly. Naturally, we could use the model
trained with fewer features. However, to proceed with online gesture recognition,
the closed-world assumption should be relaxed, implementing, for instance, an ap-
proach similar to the one carried out in (10), where an indirect detection module
is put after the classification module. At this point, the interest could be focused
back to the human-robot interaction, developing experiments where iCub recog-
nizes participant’s gestures on the fly.
Since, during the dataset collection, we also recorded the scene with a camera
at a frequency of 30 Hz, we could investigate gesture classification from a vision
point of view. Furthermore, we could compare the performance of the vision-
model with the that of the inertial-model, to evaluate the preferred solution.

One limitation that emerged during the data collection was related to the
inertial glove. More specifically, the limitation concerns the flexible connections,
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7.1 Limitations and Future work

required by IMUs to communicate with the microcontroller. These connections,
although stable, were not sufficiently robust: with very pronounced hand move-
ments, they could be compromised, resulting in a reduction of the frequency of
measured data. This aspect will be addressed in the next version of the inertial
glove, where the flexible connections will be completely excluded from the hard-
ware architecture; instead, we will opt for communication based on Bluetooth
technology.
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