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Abstract— Dexterous robotic hands are necessary for many
tasks requiring the capability of in-hand object manipulation
or tool use. Teleoperation remains a common approach for con-
trolling dexterous hands, however, it is very difficult with tradi-
tional input methods (joystick, keyboards, etc.) or requires sub-
stantial investment in hardware setup (e.g. sensorized gloves).
We introduce a teleoperation system based on the consumer-
grade Leap Motion sensor to control a simulated model of
the Shadow Dexterous Hand. Further, we present two con-
tinuous control tasks for the open source simulator PyBullet,
integrated with the OpenAI Gym interface. We evaluate our
system by using trajectories recorded by human experts as
a supervised pre-training step before applying reinforcement
learning (RL) algorithms. We show that the use of expert
demonstrations accelerates the RL training process. The pro-
posed system is available at: https://rgit.acin.tuwien.
ac.at/matthias.hirschmanner/shadow_teleop/.

I. INTRODUCTION

Dexterous multi-fingered robotic hands hold great poten-
tial to solve various complex anthropocentric control tasks.
The continuous and high dimensional action spaces make
dexterous manipulation with classical control methods diffi-
cult. This is especially true for the use-case of teleoperation
in which a human controls the robot hand. Teleoperation can
not only be used to operate the robot from a distance, but also
to generate datasets of expert generated hand movements.
These data can be utilized for imitation learning techniques
in which the system is trained to replicate expert trajectories
or to automatically generate annotated in-hand manipulation
datasets for object tracking and pose estimation.

We introduce a teleoperation system, based on the Leap
Motion sensor to control a simulated model of the Shadow
Dexterous Hand and a humanoid model based on the
CyberGlove [1]. Furthermore, we present two OpenAI Gym
environments, integrated with PyBullet [2] as physics engine.
The tasks are reaching different target fingertip positions and
in-hand object manipulation of a block, similar to [3]. We
evaluate the system by recording datasets for the two tasks
and pre-train a policy using behavior cloning. We show that
with a small number of human expert demonstrations, the
RL learning process is sped up for one of the tasks.

II. RELATED WORK

Teleoperation of robotic platforms with a high amount
of degrees of freedom is often difficult and cumbersome,

*This work was partly supported by the Austrian Science Founda-
tion (FWF) under grant agreement No. I3969-N30 InDex.

1All authors are with the Automation and Con-
trol Institute (ACIN), TU Wien, 1040 Vienna, Austria.
stefan.zahlner@student.tuwien.ac.at,
[hirschmanner, patten, vm]@acin.tuwien.ac.at

Translate to
robotic hand

Inverse
kinematic

model

Leap Motion Controller

Collect human finger positions

Simulated robotic hand 

Physics engine PyBullet

Fig. 1. Teleoperation system: The hand pose is detected by the Leap Motion
Controller. We use an inverse kinematic model to control the robotic hand
(Shadow Dexterous Hand or CyberGlove) in simulation.

especially with traditional input methods (keyboards, mice,
joysticks, etc.). Directly imitating the pose of a human
teleoperator mitigates this problem. Different approaches
using marker-based motion capture systems [4], [5] or mo-
tion capture suits [6], [7] are precise and reliable, but are
expensive and often require an elaborate setup. In recent
years, a variety of consumer-grade, marker-less human mo-
tion tracking systems have emerged. The Kinect camera was
successfully used for full-body control of humanoid robots
[8], [9]. The Leap Motion sensor we utilize in this paper has
also been used for a variety of robotic platforms [10]–[12].

A popular approach for controlling robotic hands are
various wearable sensorized gloves [13]–[15]. Marker-less
deep learning based approaches are applied to successfully
teleoperate a robotic hand from only depth images [16],
[17] or RGB images [18]. However, these approaches might
need substantial computing power and usually produce lower
frame rates than dedicated hardware. Zubrycki and Granosik
use the Leap Motion sensor to control a three finger gripper
similar to our approach [19].

Reinforcement Learning is an approach to teach tasks to
complex robotic end-effectors and showed impressive results
in recent years (e.g. [20]). However, these methods require
substantial training time and are often sample inefficient.
Utilizing expert demonstrations during training is a popular
approach to reduce training time [21]–[24]. Rajeswaran et
al. show that this technique improves the performance for
dexterous manipulations with a robotic hand [25].

III. TELEOPERATION SYSTEM

This work utilizes the Leap Motion Controller as an optical
hand tracking sensor as deemed suitable by [26]. It is an
infrared stereo camera that provides the joint positions of
the human hand by fitting a hand model to the image
stream. Our system can control a simulated model of the
Shadow Dexterous Hand [27], which is an anthropomorphic
robotic hand with 24 joints. Of those, 20 can be controlled
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independently and 4 are coupled joints, hence it has 20
degrees of freedom. Additionally, our approach can also
be applied to a visualization of the CyberGlove [1] which
is similar to a human hand and can be used to generate
datasets to investigate human-like hand-object interaction.
Fig. 1 illustrates the described teleoperation system.

For the purpose of mapping human finger positions to
robotic joint positions, an inverse kinematic model of the
Shadow Dexterous Hand is derived based on the Denavit-
Hartenberg formalism [28] and the retrievable data from the
Leap Motion sensor.

Due to the complexity of a single model, it is subdi-
vided into a total of six smaller models, one for each
finger and one for the wrist. To ensure the independence
of the hand’s pose in the sensor’s field of view, the hu-
man finger positions are retrieved relatively to the palm
position. For details about the derived parameters we refer
the reader to https://rgit.acin.tuwien.ac.at/
matthias.hirschmanner/shadow_teleop/.

IV. ENVIRONMENTS

We propose two tasks in the form of OpenAI Gym
environments for the Shadow Dexterous Hand. The tasks
are reaching a target position for each fingertip in
ShadowHandReach and the more challenging in-hand
manipulation of a block in ShadowHandBlock. Both
environments are similar to the ones presented in [3]. We use
the open source PyBullet simulator instead of the proprietary
MuJoCo simulator of the original work.

The actions of both tasks are 20-dimensional regarding
to the absolute positions of all non-coupled hand joints.
Observations contain the 20 positions and velocities of the
hand joints, as well as the Cartesian coordinates of all
fingertips (current and target positions) for the reach task.
In the object manipulation task, the observations include the
object’s Cartesian pose, linear and angular velocities, as well
as the desired target pose. Both tasks can either operate
with dense rewards, or with sparse rewards. This enables
the choice between a signal of the negative distance to the
goal and a robotic approach of success or failure.
ShadowHandReach: Starting from a fixed position, the

fingertips need to reach the goal, which is randomly sampled
from a set of 5 configurations. The goal is achieved and
the episode ends, if the sum of all distances between the
fingertips and the desired positions is less than 1 cm.
ShadowHandBlock: A randomly orientated block is

placed in the hand’s grip. The goal is to manipulate the object
in-hand to reach and hold a specific target orientation within
a predefined threshold (0.1 rad).

V. RESULTS

In this paper, we evaluate the performance of Deep
Deterministic Policy Gradient (DDPG [29]) and Hindsight
Experience Replay (HER [30]) with and without pre-training
on expert demonstrations. The experiments are conducted
with both a dense and a sparse reward structure and mainly
use the framework provided by [31], [32].

Fig. 2. Median success rate (line) and interquartile range (shaded area) with
(orange) and without (blue) pre-training. Left: ShadowHandReach pre-
trained on 25 trajectories for 100 iterations. Right: ShadowHandBlock
pre-trained on 150 trajectories for 100 iterations. One training episode has
a maximum of 100 timesteps, each timestep consists of 10 simulator steps
with a frequency of 240 Hz.

ShadowHandReach: This simple environment is trained
for a total of 3·106 timesteps using DDPG with an underlying
Multi-Layer Perceptron (MLP) policy. For the pre-training a
set of 25 trajectories is used. The experiments are repeated 5
times with different random seeds and the result is reported
by computing the median success rate and the interquartile
range, as depicted in Fig. 2. The pre-trained policy manages
to successfully learn the task in approx. 1.2 · 106 timesteps.
This is significantly less, compared to its counterpart without
pre-training, which requires approx. 2.2 ·106 timesteps. This
task has a long exploration phase without much learning
progress in the beginning until it picks up learning at some
point. The speed-up from pre-training mostly stems from
reducing this phase.
ShadowHandBlock: The in-hand object manipula-

tion environment is trained for 24 · 106 timesteps, using
HER+DDPG with an MLP policy and 150 demonstrations
for the pre-training. Fig. 2 depicts the results. For this task,
pre-training does not improve training time. Contrary to the
reach task, this task does not show a long exploration phase
in the beginning. Instead, it has a significant success rate
early on, because the randomly orientated block sometimes
already starts in the goal orientation. Additionally, the block
demonstrations lack quality, since it is difficult to operate
an object in simulation without haptic feedback. We believe
that these two factors are the main reasons for the lack of
improvement using pre-training.

VI. CONCLUSION

We propose a teleoperation system to control a robotic
hand in simulation. The system utilizes the Leap Motion
Controller to capture human finger positions and converts
them to robot joint positions. Additionally, we introduce
two robotic control tasks in the PyBullet simulator. We use
our system to record human expert demonstrations for these
environments. The demonstrations are utilized to pre-train a
policy using behavioral cloning before applying state-of-the-
art RL algorithms. We show that pre-training significantly
speeds up the training process for one of the tasks. In the
future, we want to integrate better approaches to combine the
demonstrations with the RL process to accelerate the training
for more complex tasks as well.

https://rgit.acin.tuwien.ac.at/matthias.hirschmanner/shadow_teleop/
https://rgit.acin.tuwien.ac.at/matthias.hirschmanner/shadow_teleop/


REFERENCES
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