
Grasping with Chopsticks: Fine Grained Manipulation using
Inexpensive Hardware by Imitation Learning

Liyiming Ke, Jingqiang Wang, Tapomayukh Bhattacharjee, Byron Boots and Siddhartha Srinivasa

Abstract— Billions of people use chopsticks, a simple yet
versatile tool, to pick up a wide variety of food items in their
daily lives. We hope to leverage human demonstrations to
develop autonomous chopsticks-equipped robot manipulation
strategies for hard manipulation problems. The small, curved,
and slippery tips of chopsticks require fine-grained control,
which pose a challenge for picking up small objects. In this
preliminary work, we explored imitation learning methods to
learn to pick up small cube and ball-shaped objects from
expert’s teleoperation demonstrations. We trained a behavior
cloning agent, a k-Nearest Neighbors agent, and a blending
of both in robot-centric and object-centric representations. We
found that blending of the two agents showed some promise
in teaching the chopsticks robot to pick up small objects
in the object-centric frame. However, there is still a need
to incorporate adaptive real-time feedback in the learner to
improve and generalize the manipulation performance, which
points us to some plausible directions for future work.

I. INTRODUCTION

Humans have used chopsticks for thousands of years to
eat a wide variety of food items with varying physical
characteristics. The simplicity and efficacy of chopsticks’
design has inspired researchers to adapt them for various
applications such as meal assistance, surgery [1], and micro-
manipulation, which has made it a versatile tool. However,
chopsticks pose some challenges: their small, curved, and
slippery tips require fine-grained manipulation and can make
grasping a challenging task. But humans have achieved great
success using chopsticks: every day, billions of people use
chopsticks to pick up objects with varying shape, size, and
deformability, including sushi, tofu, or noodles. Noticeably,
humans also demonstrated impressive adaptability teleoper-
ating a robot equipped with chopsticks to pick up everyday
life objects [2]. In this work, we hope to leverage human
expertise with chopsticks to develop autonomous chopsticks-
based manipulation for challenging grasping tasks.

Researchers have successfully applied imitation learning to
real-world grasping tasks. However, we are not aware of any
prior work on applying imitation learning to tasks requiring
fine-grained manipulation. The challenge in doing that is
two-fold. Imitation learning learns a policy π that maps from
state s to action a. Model-free imitation learning methods
like behavior cloning and DAGGER learn the policy function
by matching its action distribution to the expert action dis-
tribution. In doing so, they define a surrogate loss. However,
minimizing the trajectory divergence between an expert and
the learner does not necessarily lead to succeeding at the task
that the expert was demonstrating. To remedy this, one might

University of Washington, Seattle WA 98105 USA. {kayke,
jwq123, tapo, bboots, siddh}@uw.edu

(a) Expert use teleoperation sys-
tem to collect demonstrations.

(b) Picking up small objects
with chopsticks

introduce a model (e.g., learning a dynamics model from
interacting with a real robot system) and leverage rollouts
from the model to further match the distribution (GAIL) [3]
or use reinforcement learning methods to optimize a task
reward while using imitation learning as a bootstrapping
method [4]. This way, the quality of the model inevitably
bounds the quality of the learned policy. But getting a model
accurate enough for fine-grained manipulation tasks with
contacts using inexpensive hardware can be challenging.

II. PROBLEM

We built a 6-DOF robot equipped with a pair of chopsticks
as its end-effector. The goal was to develop algorithms to
control this robot with chopsticks to pick up challenging
objects.

We have access to the tracked location of the objects, the
robot’s joint positions, and a kinematic model of the robot.
However, the model for our inexpensive hardware is not
highly accurate. On the one hand, the robot is assembled
from parts and there are mounting inaccuracies. On the
other hand, our robot arm’s parts are not strictly rigid:
at different configurations, the robot’s joints and links can
bend by a varying amount of small angles (e.g., 0.007 rad).
With the best calibration to our knowledge, such errors still
accumulate along the robot joints and result in errors ranging
from 1 mm to 6 mm at the robot’s end-effector. This implies
that the difference between the model-estimated chopstick tip
position and its actual position can be equal to the radius of
the small objects that we want to pick up in our experiments.

Nevertheless, humans can use our imperfect hardware to
accomplish very challenging grasping tasks. For example,
human experts achieved more than 60% success rate teleop-
erating the robot to pick up a slippery glass ball [2]. This
opens up the possibility to learn from human demonstrations.

We did experiments on three objects: a cube with 1 cm
edge length, a ball with 2 cm diameter and another ball with
1.4 cm diameter, as shown in Fig. 2a. We define success as
grasping the objects using chopsticks, lifting them above the
workstation, and holding them in the air for 1 s. We evaluated



(a) Objects to pick up (b) 5× 5 grid for evaluation

the performance of each method on each object by counting
the success rate over 25 trials. During evaluation, we divide
the square workstation plate to 5×5 grid and place the object
around the center of each grid to ensure a good coverage over
the complete workspace, see Fig. 2b.

III. DATA COLLECTION

For each object, we collected 500 trajectories of an expert
teleoperating the robot and picking up the object. During
each trajectory, we initiated the robot around a fixed home
configuration and placed the object at a random location
across the workstation. All trajectories were collected by
one expert user to minimize any multi-modal behavior that
might interfere with classic imitation learning methods like
behavior cloning. Note that we filtered out failed trajectories
(when the chopsticks moved the object without lifting it up),
and kept only the 500 successful trajectories.

Each trajectory recorded a series of triplets of the current
end-effector pose, the object location, and a target end-
effector pose. The target pose was generated from expert-
held leader chopsticks. We used the current end-effector pose
and the object location to represent the state and the target-
end effector pose as the action. The expert demonstrations
contain state-action pairs, denoted by (s∗, a∗).

On average, each trajectory lasted about 6 s. Our arm runs
at a high-level control frequency of 100Hz (i.e., how often
we update the target end-effector pose). To ensure similar
update rates, we recorded the trajectory and tested our policy
at 100Hz. For each object we collected about 300K state-
action pairs.

IV. METHODS

A. Replay: Replaying demonstrations
To test the repeatability of our hardware controller, we

chose 25 demonstrations that picked up the object from
each of the 5 × 5 grid, placed the object at exactly the
same locations used during data collection and replayed the
demonstrations to see if the robot could pick up the object.

B. BC: Behavior cloning and surrogate loss
Hoping to learn a generalized agent that can pick up the

objects from any given location, we used behavior cloning
(BC) to optimize a neural network policy π parameterized by
θ. It takes the state as input and outputs the target end effector
pose. The output from the neural network, π(s∗), is an 8D
vector containing 3D for XYZ-positions, 4D for quaternions,
and 1D for the opening angle between chopsticks. Mini-
mizing the difference between π(s∗) and expert action a∗

requires defining a surrogate loss function that transforms
the 8D vector to the 1D loss. We divided the 8D vectors
to position, rotation, and opening angle, and computed each
loss using either mean squared error or rotation difference.
We then used a weighted linear combination, denoted as w:

min
θ

∑
i

[
πθ(s

∗
i )− a∗i

]
·w (1)

where w is a tunable parameter that can assign different
weights to position error, rotation error, and end-effector
opening error. Note the choice of w and where to measure the
position error was arbitrarily defined. Therefore, we merely
optimized the surrogate loss as our objective. Implementation
details and tuning of parameters are described in Sec. VII-A.

C. KNN: K-nearest-neighbor
Testing the BC agent is subject to the covariate shift

problem: the accumulated error in the agent’s output may
lead the agent to a previously-unseen state (s 6∈ {s∗}).
Since the optimization of the neural network did not consider
such unseen states as part of its loss, it might generate
an unconstrained output. The covariate shift problem is
particularly likely for our hardware with inaccurate models
and controllers. We witnessed a few cases during testing the
behavior cloning agent: the robot started shaking or moved
to an opposite direction to intuition.

Non-parametric methods like KNN could alleviate such
covariate shift problem. We can feed an input state to the
KNN, query for neighbor states, find the corresponding ac-
tions for all neighbors and generate a weighted combination
of the neighbors’ actions as the target action. No matter how
far the robot drifted away from the collected demonstrations
and yielded a previously-unseen state, the output from the
KNN would still be a combination of some actions from
the training data. Intuitively, the output from the KNN is
constrained.

We use the last 3 end-effector poses and the object location
as the input to the KNN, denoted as s̄ (in contrast to s∗

for BC). We use KNN’s output as the target action. KNN
has some tunable parameters: the choice of k, the distance
function for comparing two states dist(s̄1, s̄2) and the mix
function that combines action labels from multiple neighbors
mix(. . . ). We picked k = 10 and the distance function:
dist(s̄1, s̄2) = [s̄1 − s̄2] · w′, where w′ allows us to tune
the weight of each dimension. Denoting the distances to the
nearest k neighbors as d, we use e−d/Z as weights to linearly
combine the actions labels where Z is the normalization
factor. Tuning of parameters are described in Sec. VII-B.

D. ObjC: The object-centric frame
What coordinate frame to represent the data in, can change

the distribution of the data. So far, we represented our
collected demonstrations in the robot-centric frame, i.e., the
robot base is the origin of the coordinate frame. Alternatively,
we could represent the data in the object-centric frame. The
object frame uses the location of the object as the origin
point. By the design of our tracking system, this location is at
the centroid position of the object. In the robot-centric frame,
all our trajectories started from the same initial configuration



(a) Robot-centric frame. (b) Object-centric frame.

Fig. 3: Visualizing the end-effector positions under different
coordinate frames for all demonstrations. Each black dot is
the xyz-position of the end effector in one step. We highlight
one trajectory that starts with red dots and ends in blue.

and reached towards different locations to pick up the object.
In the object frame, all trajectories would appear to reach
towards the origin point though each trajectory came from
different initial poses, as shown in Fig. 3.

The transformation to the object-centric frame would re-
sult in more dense distribution of trajectories passing around
the origin point, where the object sat. This decreases the
probability of encountering unseen states when the chop-
sticks were around the object to pick up and therefore, has
the potential to alleviate some covariate shift problem just
before picking up. However, the transformation could lead to
a higher chance of encountering unseen states when the robot
just starts from its initial configuration and could aggravate
the covariate shift problem at the beginning of the trajectory.
To understand how the choice of frame might affect the
agents’ performance, we compared the performance of using
object-centric frame (ObjC) versus robot-frame (default) for
both BC and KNN.

E. BCxKNN: Behavior cloning and KNN

We hope to combine the reliability of KNN with behavior
cloning. Specifically, we feed the input state first to the KNN
and use the KNN’s constrained output to be the input of our
BC agent, optimizing:

min
θ

∑
i

[πθ(KNNw′(s̄∗i ))− a
∗
i ] ·w (2)

where w is a tunable parameter for weighing the loss, w′

is a tunable parameter for KNN’s distance function and s̄∗ is
our input to the KNN. To match our KNN agent as described
above, we used the last 3 end-effector poses and the object
location as the input to the KNN, s̄∗.

Since the output from KNN is directly fed to a neural
network, we are free to specify this output, as long as we
choose a mixture of labels associated with neighbor states.
For now, we kept using the mixed actions from neighbors
(same as the KNN method in Section IV-C). We reused all
parameters for KNN− ObjC and BC− ObjC.

V. PRELIMINARY RESULTS

We tested all methods on picking up three objects: a
tracked cube (easiest), a tracked ball with 20 mm diameter
and another tracked ball with 14 mm diameter (hardest). For
each method we conducted 25 trials, picking up the object

TABLE I: Success rates of imitation learning methods,
evaluated over 25 trials, performance written in percentage.

Method Cube Ball�20mm Ball�14mm All

Expert 100 80 68 82.67
Replay 100 80 80 86.67

BC 84 16 12 37.33
KNN 64 28 8 33.33

BC− ObjC 92 16 24 44.00
KNN− ObjC 84 64 12 53.33

BCxKNN− ObjC 64 64 36 54.67

from each cell of the 5 × 5 grid. The results are shown in
Table. I and winners for each column are highlighted.

We tested the Expert success rate in teleoperating the
robot chopsticks to pick up the objects. Note that we kept
only successful trajectories as our Demonstrations. We
replayed 25 successful demonstrations and documented their
success rates as Replay1. We noted that Replay achieved
100% success rate on cube but only 80% success rate on
balls. This is probably due to that picking up a cube is less
sensitive to positional inaccuracy than picking up a ball,
which required grasping at precisely the points across the
diameter.
BC and KNN achieved comparable performance, so did the

BC− ObjC and KNN− ObjC. Empirically, behavior cloning
achieved higher success rate picking up the cube and the
small ball whereas KNN achieved higher success rate picking
up the big ball.

The object-centric frame agents (ObjC) performed better
that robot-centric regardless of algorithms on picking up all
objects. We then trained a BCxKNN− ObjC agent, using the
same parameters of our best BC− ObjC and KNN− ObjC

agent. This agent performed the best on picking up the big
and small ball but had trouble picking up the cube. During its
roll-out, we witnessed that the agent could move towards the
cube but occasionally had problems closing the chopsticks,
keeping the same pose without moving.

It is worth mentioning that KNN agents were more shaky
regardless of their performance and could fail to pick up
the object as it suddenly stopped moving; BC agents could
sometimes pick up the cube, but it occasionally moved to
weird poses and hit the workstation, perhaps due to the
covariate shift; and BCxKNN agents appeared to have the
smoothest motion but occasionally stopped moving, just like
the KNN agents.

VI. DISCUSSIONS

We explored imitation learning methods to pick up small
cube and ball objects from expert demonstrations. We ob-
served that representing locations under the object-centric
frame made both KNN and BC agents perform better. We
combined BC and KNN agents and achieved better success
rate picking up the balls but not for the cube.

Why did transformation to the object-centric frame make
both KNN and BC agents perform better than using the

1Our hardware initially had low success rates for cube and small ball
during replay (90% and 15%). We calibrated the system, improved the
controller and tuned the gains to achieve 100% and 80%.



robot-centric frame? One plausible reason could be that the
object-centric frame increases the density of trajectories in
the critical zone and makes both BC and KNN agents more
robust to small variations. Our task requires high precision
around the object. The grasping success is highly sensitive
to small perturbations when the agent is just about to pick
up the object. In Fig. 3, we visualized the distribution of
demonstrations in both the frames. Having a diverse and
dense set of trajectories around the object (Fig. 3b) increases
likelihood for the agent to have seen a similar training data
point. We also noted that all the object-centric frame agents
had an easier time picking up the object that was closer to
the initial robot configuration, suggesting that ObjC agents
could potentially suffer from more covariate shift if the agent
needed to go through a longer trajectory to pick up the object.

Why did our BCxKNN agent perform the best for balls but
not for the cube? One possible reason might be the cube
demonstrations. Our expert had slightly different styles to
pick up the cube and the balls. For example, they sometimes
held the chopsticks still in the air before closing around the
cube. This might explain some of our KNN agent’s failures. To
pick up the cube, KNN and BCxKNN agents would sometimes
stop moving, when the chopsticks were already at the right
position for pick up and the robot only needed to close
the chopsticks. Perhaps BCxKNN inherited such problematic
behavior from KNN (since we used the same parameters as
that used in the KNN algorithm). We are experimenting with
the output from KNN and its parameters to search for a fix.

Our tasks require high precision in manipulation. It puts a
burden on both the controller (e.g. the exact placement of end
effector) and on the perception stack (e.g. where exactly the
ball is). The inability to pick up the ball during replaying
of the demonstrations, even at the same locations as used
during expert demonstrations, suggests the need to have the
agent close the feedback loop and adjust to its perceived
state. Unable to query the expert for such labels, we need
to solicit this information from other sources. One possible
way is to roll out the learner in the simulator, observe its
deviated state, and generate a synthetic demonstration data
that guides the learner to “correct” its behavior. We denote
the start of a demonstration as (s0, a0)(s1, a1) . . . , and let
us assume that after executing a0 from s0, the agent reaches
s′1. We can generate some action a′1 which aims to bring the
robot from s′1 back to s2 and add (s′1, a

′
1) to the training

data. One can use Model Predictive Control to generate a′1.
This would be an extension to the Data as a Demonstrator
method [5] and could be a plausible direction for our future
work.

VII. APPENDIX

A. Implementation details for BC

We measured the position error at the chopsticks’ tip,
which ideally could be the same as the object’s location
after chopsticks picked up the object. To tune the surrogate
loss parameter w, we assigned an initial weight vector that
put a heavy punishment on the x-y-z loss and open loss.

Depending on the behavior of the agent during test time,
we increased the x-y-z loss weight if the agent couldn’t
reach the object or it failed to grasp at the correct spot; we
increased the open loss weight if the agent couldn’t close
the chopsticks at the right time; we increased the rotation
loss weight if the agent rotated to unseen poses during data
collection. We repeated the tuning process for 2 iterations and
ended up assigning the following weights to x-y-z, rotation,
and opening losses: 1.9, 0.01, 2.2.

B. Implementation details for KNN

Our parameters w′ for KNN distance function assigns a
weight to the x-y-z, rotation, opening, and target components
for an input state. We tuned them using a similar procedure to
how we tuned w for BC. We ended up assigning the following
weights to each component: 1.1, 0.1, 1, 4.25. In additional to
the parameterized distance function, we also experimented
with transforming our data such that after the transformation,
we could use the L2 norm as the distance function. We tried
1) standard normalization of each dimension independently
and 2) running principal component analysis to extract
orthogonal bases from data. Neither worked well for our
application.

We used a different input to KNN from BC: BC accepted
the current end effector pose and the object location, s∗, as
an 11D input whereas KNN accepted the last 3 end effector
poses and the current object location as a 27D input, denoted
as s̄. We wished to keep the input dimension for BC small
so that the neural network training would require less data.
We needed to use the last few end-effector poses to KNN

because KNN had problem closing the chopsticks when we
used only the current end effector pose. Denoting the last
three end effector poses as pt, pt−1, pt−2 and the current
object location as ot, the input to BC would be s∗ = [pt, ot].
We generate s̄∗ = [pt, γpt−1, γpt−2, ot] where γ is a discount
factor that we set to 0.8.

ACKNOWLEDGEMENT

This work was (partially) funded by the National In-
stitute of Health R01 (#R01EB019335), National Science
Foundation CPS (#1544797), National Science Foundation
NRI (#1637748), the Office of Naval Research, the RCTA,
Amazon, and Honda Research Institute USA.

REFERENCES

[1] H. Sakurai, T. Kanno, and K. Kawashima, “Thin-diameter chopsticks
robot for laparoscopic surgery,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2016, pp. 4122–
4127.

[2] L. Ke, A. Kamat, J. Wang, T. Bhattacharjee, C. Mavrogiannis, and S. S.
Srinivasa, “Telemanipulation with chopsticks: Analyzing human factors
in user demonstrations,” in IROS. IEEE, 2020.

[3] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in neural information processing systems, 2016, pp. 4565–
4573.

[4] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband et al., “Deep q-learning
from demonstrations,” in AAAI, 2018.

[5] A. Venkatraman, B. Boots, M. Hebert, and J. A. Bagnell, “Data
as demonstrator with applications to system identification,” in ALR
Workshop, NIPS, 2014.


