
  

 

Abstract—A key challenge in robot teaching is grasp-type 
recognition with a single RGB image and a target object name.  
Here, we propose a simple yet effective pipeline to enhance 
learning-based recognition by leveraging a prior distribution of 
grasp types for each object. In the pipeline, a convolutional 
neural network (CNN) recognizes the grasp type from an RGB 
image. The recognition result is further corrected using the 
prior distribution (i.e., affordance), which is associated with the 
target object name. Experimental results showed that the 
proposed method outperforms both a CNN-only and an 
affordance-only method. The results highlight the effectiveness 
of linguistically-driven object affordance for enhancing 
grasp-type recognition in robot teaching. 

I. INTRODUCTION 

Robot grasping has been a major issue in robot teaching 
for decades. Recent research has proposed learning-based 
systems to achieve end-to-end robot grasping [1]–[7]. These 
systems aim to estimate the contact points or motor commands 
from the visual input. However, the desired grasping can differ 
for the same target object depending on the action goals. 
Therefore, a robot teaching framework should benefit from 
recognizing how a demonstrator grasps an object (i.e., grasp 
type) as an intermediate representation of grasping. 

In most cases, an object is associated with particular prime 
actions or grasp types [8]–[10]. Inspired by these studies, we 
propose to use a prior distribution of grasp types to improve a 
learning-based classification with a convolutional neural 
network (CNN) (Fig. 1). We refer to the prior distribution as 
an affordance, the concept proposed by Gibson [11]. An 
affordance is obtained by searching a database by an object 
name. Although several studies have reported the 
effectiveness of using multimodal cues for grasp-type 
recognition [12], [13], the effectiveness of  
linguistically-driven object affordance is still poorly 
understood within the context of learning-based recognition. 
In this study, we attempt to highlight the effectiveness of the 
proposed method by comparing it with a CNN-only and an 
affordance-only method. The main contribution of this work is 
to propose a pipeline to enhance grasp-type recognition by 
leveraging an object affordance. 

II. METHOD 

A. Data Preparation 

A dataset by Bullock et al. [14], which contains 
first-person images obtained from four workers, was used. 
The images were labeled with an object name and grasp type. 
The grasp type was based on a grasp taxonomy by Feix et al. 
[15]. Among the grasp types in the taxonomy, we focused on 

 
Naoki Wake, Kazuhiro Sasabuchi, and Katsushi Ikeuchi are with Applied 

Robotics Research, Microsoft, Redmond, WA, 98052, USA (e-mail: 
naoki.wake@microsoft.com). 

those labeled frequently in the dataset. Based on the study by 
Yang et al. [12], we chose the types belonging to power, 
intermediate, precision, and spherical grasps (Fig. 2a). 

We prepared a dataset of grasping images of a machinist 
(Machinist 1) to learn a CNN-based grasp classifier. A 
third-party hand detector [16] was applied to crop hand 
regions from the original images, and detection errors were 
manually filtered. Fifty images were prepared for each of the 
four grasp types. Ninety percent of the images were used as a 
training dataset, and the rest were used as a test dataset. The 
network was obtained by fine-tuning AlexNet [17]. The 
prepared dataset was composed of a variety of target objects 
(Fig. 2b), which may be grasped in several ways.  

We prepared an affordance database by calculating a 
normalized histogram of the labeled grasp types for each 
object. Fig. 2c shows several examples of object affordances. 
The affordances were estimated from another machinist 
(Machinist 2). To avoid contamination of the test and training 
datasets, we did not include data from Machinist 1. 

B. Fusing CNN and Object Affordance 

We formulate a grasp detection by fusing a CNN and an 
object affordance. Image, object name, and grasp type are 
denoted as 𝑖, 𝑜, and 𝑔, respectively. We can assume that the 
output of a CNN and an affordance reflect conditional 
probability distributions of 𝑝(𝑔|𝑖) and 𝑝(𝑔|𝑜), respectively 
(Fig. 1). Further, assuming that 𝑝(𝑖)  and 𝑝(𝑜)  are 
independent, the following equation holds: 

 

 

Hence, a conditional probability distribution 𝑝(𝑔|𝑖, 𝑜) is 
estimated by the distributions available:  𝑝(𝑔|𝑖), 𝑝(𝑔|𝑜), and 
 𝑝(𝑔). Finally, the grasp type is determined as the one that 
maximizes 𝑝(𝑔|𝑖, 𝑜). 

We evaluated the effectiveness of the proposed pipeline by 
comparing three methods: the proposed pipeline (i.e., 
𝑝(𝑔|𝑖, 𝑜)), a pipeline using only the same CNN (i.e., 𝑝(𝑔|𝑖)), 
and a pipeline using only the affordance (i.e., 𝑝(𝑔|𝑜)). The 
grasp type that maximizes the probability distribution was 
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Fig. 1. Proposed pipeline for grasp-type recognition leveraging an object 
affordance. The pipeline estimates a grasp from a pairing of an object 
name and an image of the grasping hand. 

 𝑝(𝑔|𝑖) 𝑝(𝑔|𝑜)  =
𝑝(𝑖|𝑔) 𝑝(𝑜|𝑔) 𝑝(𝑔)

𝑝(𝑖) 𝑝(𝑜)
 

= 𝑝(𝑔|𝑖, 𝑜) 𝑝(𝑔). 
(1) 



  

TABLE I  PRECISION (P) AND RECALL (R) FOR EACH GRASP TYPE AND 
OVERALL ACCURACY 

Grasp type 
Lateral 
tripod 

Medium 
wrap 

Power 
sphere 

Thumb-2 
finger 

All 

P R P R P R P R Acc. 

CNN 1.0 .50 .50 .25 .57 .80 .50 .67 .57 

Affordance .15 1.0 1.0 .25 NaN 0.0 NaN 0.0 .21 
CNN+ 

Affordance 
.50 .50 1.0 .50 1.0 1.0 .60 1.0 .79 

 

TABLE II EXAMPLES OF THE INFERENCE RESULT 

Object 
name 

Towel File Rod 

   
CNN Medium wrap Power sphere Power sphere 

Affordance Lateral tripod Lateral tripod Lateral tripod 
CNN+ 

Affordance 
Power sphere Medium wrap Thumb-2 finger 

a. Bold indicates the true grasp types 

chosen. We omitted cases where 𝑝(𝑔|𝑖, 𝑜) became zero across 
the four grasp types.  

III. RESULTS AND DISCUSSION 

Table I shows the precision, recall, and overall accuracy of 
grasp-type recognition using various pipelines. The proposed 
pipeline demonstrated better performance than the CNN- or 
affordance-only method in terms of overall accuracy, 
suggesting the efficacy of combining an object affordance 
with a CNN. Table II shows examples in which both the CNN- 
and affordance-only method failed. We observed that the 
output of the proposed pipeline is reasonable by fusing an 
output of the CNN and an object affordance. Interestingly, in 
some cases a novel candidate emerged after the fusing.  

For a few images, it was not easy to recognize the grasp 
type even to human eyes. The difficulties were due to the 
occlusions of fingers or occlusions of an object in the hand. 
The use of affordance appears to enhance the CNN-only 
method in addressing such images with visual ambiguity.  

IV. CONCLUSION AND FUTURE STUDIES 

We presented a pipeline that enhances learning-based 
grasp-type recognition by leveraging an object affordance. 
The pipeline can be applied to an arbitrary learning-based 
classification beyond the CNN or dataset considered in this 
study. Furthermore, the pipeline allows recognizable grasp 
types to be limited by designing an object affordance 𝑝(𝑔|𝑜), 
based on a concept of task-oriented programming [18]. 

We believe that the proposed linguistically-driven 
grasp-type recognition can be usefully employed in a learning 
from demonstration (LfD) framework, where an object name 
could be estimated by an accompanying verbal instruction. 
We are currently testing this hypothesis by integrating the 
pipeline with an LfD system that we developed in-house [19]. 
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Fig. 2. Grasp types and datasets used for the experiment. (a) The four grasp 
types focused on in this study. The grasping names are based on [15]. (b) 
Top ten objects frequently appearing in the training dataset. The dataset 
was obtained from Machinist 1. (c) Examples of object affordances 
calculated from Machinist 2. The probability was calculated across 33 
grasp types in the original dataset [14]. 


