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Abstract—Object detection is a necessary vision task for
understanding hand-object interaction. It is therefore important
that object detectors are robust to the occlusion induced by hands.
A common approach to improve occlusion handling is random
image augmentation. We substantiate the use of existing and
available data sources as a cheap and efficient data augmentation
method for handling the specific occlusion of human hands.
Augmenting training images with available hand masks leads
to a relative improvement of up to 13% compared to popular
procedural methods and up to 19% compared to baseline data.

I. INTRODUCTION

Robust object detection is a crucial requirement for various
machine vision tasks. Visual object tracking systems require
consistent and confident predictions, even if the object is
partially occluded. Object detectors perform especially poorly
when objects of interest are occluded by unknown objects, i.e.,
background objects that are not visible in the training set. We
refer to these images as out-of-distribution samples and to the
unknown objects as distractors.

It is desired to train on available datasets to avoid manual
data creation and annotation. However, these datasets often do
not cover use case related challenges, i.e, out-of-distribution
distractors. Applying random image augmentations results in
improved occlusion and illumination handling by increasing
the training data variation [1], [2]. These procedural methods
are easy to use yet might lack the sophistication to properly
handle task-specific occluders. For the scenario of detecting
the object during hand-object interaction, we therefore aug-
ment the training data with available samples of the expected
distractors, i.e., human hands. Fig 1 shows the proposed data
augmentation method. We show that augmenting images with
inexpensive available hand distractors improves the out-of-
distribution handling for two CNN-based detectors [3], [4]
during hand-object interaction.

II. HAND AUGMENTATION

This section discusses details of our proposed data aug-
mentation method. We use RGB images as training data
and refer to it as original data. The available augmentation
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Fig. 1. Inexpensive out-of-distribution distractor handling by leveraging on
available training data.

sources are referred to as augmentations and the set of query
images, featuring out-of-distribution distractors, is referred to
as target data. Occluder-specific information is taken from the
augmentations and are applied to original images to handle
the expected distractors in the target data.

The only required information of the expected distractors
is a segmentation mask, which comes at little cost. Existing
datasets with known hand poses are exploited: Masks are
obtained by directly thresholding depth images, as done in [5],
or mesh models are used to render hands in varying hand
poses [6]. The image locations to apply the augmentations
are randomly sampled per image and the masks are “pasted”
onto the original RGB images. The pixels of each mask in
the original image are filled uniformly with a randomly sam-
pled RGB-triplet. Finally, the annotations of the object (i.e.,
bounding boxes and visibility ratios) are adjusted accordingly.
The augmented data is thus prepared to train object detectors
for the specific use case.

III. EXPERIMENTS

The proposed method is tested on samples of human-object
interaction. A dataset not featuring human-object interaction
is used for training, i.e., original data. This data is augmented
with the expected distractors (augmentations) in order to han-
dle variations in the target data. Results are compared using
the F1 score averaged over all classes. For the experiments, we
refer to our proposed augmentation as shape. Random erase
augmentation as proposed by Zhong et al. [2] is used as a
representative baseline for occlusion handling. Additionally we
also provide results when directly applying hand shapes and
appearance from the real-world training images (real) to the
original data. Lastly, filling our hand shapes with the strategy
of [2] is referred to as random.



A. Training Data

The YCB-video dataset [7] is used as the original training
dataset. It features 92 videos with 133,827 frames of cluttered
scenes with 21 YCB-objects [8] and annotated occlusion
statistics. As augmentations, segmentation masks are taken
from the HO3D [6] training dataset. These masks are used
directly without rescaling. The HO3D dataset features 66,034
training images and 11,524 test images of YCB-objects during
in-hand manipulation. The test set consists of 13 sequences of
which 10 do not contain hand models featured in the training
set. Consequently, these 10 sequences are used as target data in
order to reason about out-of-distribution distractor handling.
Experiments on YCB-video only consider the 9 YCB-objects
featured in HO3D’s test set.

B. Object Detectors

We employ RetinaNet [4] and YOLOv3 [3] as object
detectors. RetinaNet uses Feature Pyramid Networks [9] on top
of Resnet50 [10]. RetinaNet starts with 9 bounding box priors
for each anchor location and scale. The upper left and lower
right corners are predicted conditioned on the priors’ width and
height. YOLOv3 predicts only a single bounding box per grid
cell and scale. The box offset from the upper left image corner
and box width and height are predicted conditioned on the
priors’ width and height. Both detectors apply non-maximum
suppression to their detections. YOLOv3 is faster but has less
detection hypothesis per image compared to RetinaNet. Both
detectors are pre-trained on the Imagenet dataset [11] and use
a learning rate of 1e-5.

C. Object Detection Performance

For evaluation we set the Intersection over Union threshold
for true positives to 0.5 and consider all detections with an
object score above 0.5 as valid detections. The F1 score
averaged over all 9 YCB-video objects is computed to compare
the performance of different augmentation strategies.

Table I shows the results after training YOLOv3 on 192,000
images and RetinaNet on 286,000 images. The last row indi-
cates detection performance when training on the official train-
ing data of HO3D. For out-of-distribution distractor handling

TABLE I
OVERALL F1 SCORE COMPARISON FOR DIFFERENT AUGMENTATIONS.

F1 Score (YOLOv3, 9 classes) Validation Data
YCB-V YCB-V + real HO3D

Training Data
YCB-V (original) 0.904 0.831 0.590
YCB-V + real 0.885 0.863 0.616
YCB-V + random 0.893 0.862 0.637
YCB-V + shape (ours) 0.900 0.864 0.639
YCB-V + Random erase [2] 0.864 0.806 0.616
HO3D 0.287 0.256 0.939

F1 Score (RetinaNet, 9 classes) Validation Data
YCB-V YCB-V + real HO3D

Training Data
YCB-V (original) 0.733 0.656 0.570
YCB-V + real 0.735 0.700 0.639
YCB-V + random 0.752 0.781 0.664
YCB-V + shape (ours) 0.758 0.666 0.678
YCB-V + Random erase [2] 0.770 0.717 0.599
HO3D 0.367 0.312 0.724
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Fig. 2. Occlusion handling on the hand-augmented YCB-video test set using
YOLOv3. The histogram shows the averaged F1 scores along 10% object
visibility steps.

(last column) using YOLOv3 (upper table) our method shows
a relative performance increase of 8.3% compared to the origi-
nal data and 3.7% compared to the baseline Random erase [2].
For RetinaNet (lower table) the relative performance increase
is 18.9% and 13.2%, respectively. Interestingly, shape aug-
mentation also outperforms real augmentations. Even though
real is closer to real-world data. It has to be mentioned that
a considerable number of hand masks from HO3D contain
artifacts from YCB-v objects, which may cause confusion.

D. Hand Occlusion Handling

In the second experiment, we compare the occlusion han-
dling capability of our proposed augmentation method com-
pared to using real-world textures for training (real). HO3D’s
evaluation set does not provide hand segmentation masks thus
cannot be used to analyze occlusion handling. Consequently,
we use the augmentation of the YCB-video test images with
hands from HO3D’s training data set. Fig. 2 shows the results
for YOLOv3. Compared to original, both augmentation meth-
ods show increased robustness against occlusion, especially for
visibility ratios below 50%. The shape augmentation shows
a slightly more robust occlusion handling compared to the
hand augmentation for higher visibility ratios 1. For general
performance comparison on our augmented test data set refer
to Table I (middle column).

IV. CONCLUSION

We proposed an effective and inexpensive data augmenta-
tion method for improving the performance of two common
object detectors in order to deal with the occlusion of the
human hand in hand-object interaction. Future work will
consider finding effective methods to generate more realistic
augmentation data, e.g., augmenting each image with realistic
hand poses.

1Despite real performing better below 30% visibility, the results are not
meaningful because of the low number of samples.
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